Optical, mechanical, and thermal properties of barium borate

Journal of Applied Physics - Tập 62 Số 5 - Trang 1968-1983 - 1987
D. Eimerl1, Laura E. Davis1, Stephan P. Velsko1, E. K. Graham2, A. Zalkin3
1Nonlinear Optical Materials Group, Lawrence Livermore National Laboratory, P. O. Box 5508, Livermore, California 94550
2The Pennsylvania State University, University Park, Pennsylvania, 16802
3Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

Tóm tắt

We report measurements of all the material constants necessary to fully characterize barium borate as a nonlinear optical material. All data was taken on crystals supplied by Professor Chuangtien Chen, Fuzhou, People’s Republic of China. We have determined the crystal structure, the optical absorption, the refractive indices from the UV to the near IR, the thermo-optic coefficients, the nonlinear optical or coefficients, the resistance to laser damage, the elastic constants, the thermal expansion, thermal conductivity and dielectric constants, and the fracture toughness. This data is used to evaluate barium borate for a variety of applications. We find that, in general, barium borate has a low acceptance angle, and that despite its higher optical nonlinearity, it is therefore not significantly more efficient than other commonly available materials, except in the UV below 250 nm. On the other hand, it has a high damage threshold, it is physically robust, it has good UV and IR transparency, and it has excellent average power capability. It permits deep UV generation, and has great potential for generating tunable visible and IR light as an optical parametric amplifier.

Từ khóa


Tài liệu tham khảo

1985, Sci. Sin. Ser. B, 28, 235

1986, IEEE J. Quantum Electron., QE-22, 1013

1986, Opt. Lett., 11, 797, 10.1364/OL.11.000797

1984, Guangxue Xuebao, 4, 513

1987, IEEE J. Quantum Electron., QE-23, 575

1949, J. Res. Natl. Bur. Stand., 42, 131, 10.6028/jres.042.011

1966, Acta Crystallogr., 20, 819, 10.1107/S0365110X66001920

1983, Z. Kristallogr., 165, 91, 10.1524/zkri.1983.165.1-4.91

1984, Z. Kristallogr., 168, 109, 10.1524/zkri.1984.168.1-4.109

1982, Acta Phys. Sin., 31, 948, 10.7498/aps.31.948

1985, Acta Phys. Sin., 34, 823, 10.7498/aps.34.823

1986, Opt. Commun., 57, 146, 10.1016/0030-4018(86)90146-X

1987, Ferroelectrics, 72, 95, 10.1080/00150198708017942

1981, J. Am. Ceram. Soc., 64, 533, 10.1111/j.1151-2916.1981.tb10320.x

1981, J. Am. Ceram. Soc., 64, 539, 10.1111/j.1151-2916.1981.tb10321.x

1983, J. Am. Ceram. Soc., 66, C

1962, J. Sci. Instrum., 39, 545, 10.1088/0950-7671/39/11/303

1961, J. Acoust. Soc. Am., 33, 12, 10.1121/1.1908386

1962, J. Acoust. Soc. Am., 34, 609, 10.1121/1.1918175

1964, Appl. Phys. Lett., 5, 17, 10.1063/1.1754022