Suggestive evidence of associations between liver X receptor β polymorphisms with type 2 diabetes mellitus and obesity in three cohort studies: HUNT2 (Norway), MONICA (France) and HELENA (Europe)
Tóm tắt
The liver X receptors (LXR) α and β regulate lipid and carbohydrate homeostasis and inflammation. Lxrβ
-/-
mice are glucose intolerant and at the same time lean. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRβ and risk of type 2 diabetes mellitus (T2DM), obesity and related traits in 3 separate cohort studies. Twenty LXRβ SNPs were identified by sequencing and genotyped in the HUNT2 adult nested case-control study for T2DM (n = 835 cases/1986 controls). Five tag-SNPs (rs17373080, rs2695121, rs56151148, rs2303044 and rs3219281), covering 99.3% of the entire common genetic variability of the LXRβ gene were identified and genotyped in the French MONICA adult study (n = 2318) and the European adolescent HELENA cross-sectional study (n = 1144). In silico and in vitro functionality studies were performed. We identified suggestive or significant associations between rs17373080 and the risk of (i) T2DM in HUNT2 (OR = 0.82, p = 0.03), (ii) obesity in MONICA (OR = 1.26, p = 0.05) and (iii) overweight/obesity in HELENA (OR = 1.59, p = 0.002). An intron 4 SNP (rs28514894, a perfect proxy for rs17373080) could potentially create binding sites for hepatic nuclear factor 4 alpha (HNF4α) and nuclear factor 1 (NF1). The C allele of rs28514894 was associated with ~1.25-fold higher human LXRβ basal promoter activity in vitro. However, no differences between alleles in terms of DNA binding and reporter gene transactivation by HNF4α or NF1 were observed. Our results suggest that rs17373080 in LXRβ is associated with T2DM and obesity, maybe via altered LXRβ expression.
Tài liệu tham khảo
Bensinger SJ, Tontonoz P: Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008, 454: 470-477. 10.1038/nature07202.
Baranowski M: Biological role of liver X receptors. J Physiol Pharmacol. 2008, 59 (Suppl 7): 31-55.
Zelcer N, Tontonoz P: Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006, 116: 607-614. 10.1172/JCI27883.
Lu TT, Repa JJ, Mangelsdorf DJ: Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem. 2001, 276: 37735-37738.
Zitzer H, Wente W, Brenner MB, Sewing S, Buschard K, Gromada J, Efanov AM: Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels. Endocrinology. 2006, 147: 3898-3905. 10.1210/en.2005-1483.
Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ: Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA. 1999, 96: 266-271. 10.1073/pnas.96.1.266.
Song C, Liao S: Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology. 2000, 141: 4180-4184. 10.1210/en.141.11.4180.
Song C, Hiipakka RA, Liao S: Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids. 2000, 65: 423-427. 10.1016/S0039-128X(00)00127-6.
Gabbi C, Warner M, Gustafsson JA: Minireview: liver X receptor beta: emerging roles in physiology and diseases. Mol Endocrinol. 2009, 23: 129-136. 10.1210/me.2008-0398.
Korach-Andre M, Parini P, Larsson L, Arner A, Steffensen KR, Gustafsson JA: Separate and overlapping metabolic functions of LXRalpha and LXRbeta in C57Bl/6 female mice. Am J Physiol Endocrinol Metab. 2010, 298: E167-178. 10.1152/ajpendo.00184.2009.
Gerin I, Dolinsky VW, Shackman JG, Kennedy RT, Chiang SH, Burant CF, Steffensen KR, Gustafsson JA, Macdougald OA: LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J Biol Chem. 2005, 280: 23024-23031. 10.1074/jbc.M412564200.
Efanov AM, Sewing S, Bokvist K, Gromada J: Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes. 2004, 53 (Suppl 3): S75-S78. 10.2337/diabetes.53.suppl_3.S75.
Choe SS, Choi AH, Lee JW, Kim KH, Chung JJ, Park J, Lee KM, Park KG, Lee IK, Kim JB: Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes. 2007, 56: 1534-1543. 10.2337/db06-1059.
Schuster GU, Parini P, Wang L, Alberti S, Steffensen KR, Hansson GK, Angelin B, Gustafsson JA: Accumulation of foam cells in liver X receptor-deficient mice. Circulation. 2002, 106: 1147-1153. 10.1161/01.CIR.0000026802.79202.96.
Lund EG, Menke JG, Sparrow CP: Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol. 2003, 23: 1169-1177. 10.1161/01.ATV.0000056743.42348.59.
Midthjell K, Kruger O, Holmen J, Tverdal A, Claudi T, Bjorndal A, Magnus P: Rapid changes in the prevalence of obesity and known diabetes in an adult Norwegian population. The Nord-Trondelag Health Surveys: 1984-1986 and 1995-1997. Diabetes Care. 1999, 22: 1813-1820. 10.2337/diacare.22.11.1813.
Thorsby PM, Midthjell K, Gjerlaugsen N, Holmen J, Hanssen KF, Birkeland KI, Berg JP: Comparison of genetic risk in three candidate genes (TCF7L2, PPARG, KCNJ11) with traditional risk factors for type 2 diabetes in a population-based study--the HUNT study. Scand J Clin Lab Invest. 2009, 69: 282-287. 10.1080/00365510802538188.
Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-10.1093/nar/16.3.1215.
The World Health Organization MONICA Project: Ecological analysis of the association between mortality and major risk factors of cardiovascular disease. Int J Epidemiol. 1994, 23: 505-516. 10.1093/ije/23.3.505.
Cottel D, Dallongeville J, Wagner A, Ruidavets JB, Arveiler D, Ferrieres J, Bingham A, Marecaux N, Ducimetiere P, Amouyel P: The North-East-South gradient of coronary heart disease mortality and case fatality rates in France is consistent with a similar gradient in risk factor clusters. Eur J Epidemiol. 2000, 16: 317-322. 10.1023/A:1007678526840.
Moreno LA, Gonzalez-Gross M, Kersting M, Molnar D, De HS, Beghin L, Sjostrom M, Hagstromer M, Manios Y, Gilbert CC, Ortega FB, Dallongeville J, Arcella D, Warnberg J, Hallberg M, Fredriksson H, Maes L, Widhalm K, Kafatos AG, Marcos A: Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2008, 11: 288-299. 10.1017/S1368980007000535.
Moreno LA, De HS, Gonzalez-Gross M, Kersting M, Molnar D, Gottrand F, Barrios L, Sjostrom M, Manios Y, Gilbert CC, Leclercq C, Widhalm K, Kafatos A, Marcos A: Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int J Obes (Lond). 2008, 32 (Suppl 5): S4-11. 10.1038/ijo.2008.177.
Legry V, Bokor S, Cottel D, Beghin L, Catasta G, Nagy E, Gonzalez-Gross M, Spinneker A, Stehle P, Molnar D, Amouyel P, Dallongeville J, Meirhaeghe A: Associations between common genetic polymorphisms in angiopoietin-like proteins 3 and 4 and lipid metabolism and adiposity in European adolescents and adults. J Clin Endoc Metab. 2009, 94: 5070-5077. 10.1210/jc.2009-0769.
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000, 320: 1240-1243. 10.1136/bmj.320.7244.1240.
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002, 106: 3143-3421.
Nilsen H, Hayes B, Berg PR, Roseth A, Sundsaasen KK, Nilsen K, Lien S: Construction of a dense SNP map for bovine chromosome 6 to assist the assembly of the bovine genome sequence. Anim Genet. 2008, 39: 97-104. 10.1111/j.1365-2052.2007.01686.x.
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T: MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005, 21: 2933-2942. 10.1093/bioinformatics/bti473.
Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI: Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem. 2003, 278: 48283-48291. 10.1074/jbc.M302287200.
Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-265. 10.1093/bioinformatics/bth457.
Tregouet DA, Garelle V: A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics. 2007, 23: 1038-1039. 10.1093/bioinformatics/btm058.
Dahlman I, Nilsson M, Gu HF, Lecoeur C, Efendic S, Ostenson CG, Brismar K, Gustafsson JA, Froguel P, Vaxillaire M, Dahlman-Wright K, Steffensen KR: Functional and genetic analysis in type 2 diabetes of liver X receptor alleles--a cohort study. BMC Med Genet. 2009, 10: 27-10.1186/1471-2350-10-27.
Dahlman I, Nilsson M, Jiao H, Hoffstedt J, Lindgren CM, Humphreys K, Kere J, Gustafsson JA, Arner P, Dahlman-Wright K: Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics. 2006, 16: 881-889. 10.1097/01.fpc.0000236334.49422.48.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/11/144/prepub