Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

Nature Communications - Tập 6 Số 1
William Tapper1, Amy V. Jones1, Róbert Královics2, Ashot S. Harutyunyan2, Katerina Zoi3, William Leung4, Anna L. Godfrey5, Paola Guglielmelli6, Alison Callaway4, Daniel Ward4, Paula Aranaz4, Helen White4, Katherine Waghorn4, Feng Lin4, Andrew Chase4, E. Joanna Baxter5, Cathy MacLean5, Jyoti Nangalia5, Edwin Chen5, Paul Evans7, Michael Short7, Andrew Jack7, Louise Wallis8, David Oscier8, Andrew Duncombe9, Anna Schuh10, Adam J. Mead11, Mike Griffiths12, Joanne Ewing13, Rosemary E. Gale14, Susanne Schnittger15, Torsten Haferlach15, Frank Stegelmann16, Konstanze Döhner16, Harald Grallert17, Konstantin Strauch17, Toshiko Tanaka18, Stefania Bandinelli19, Andreas Giannopoulos3, Lisa Pieri6, Carmela Mannarelli6, Heinz Gisslinger20, Giovanni Barosi21, Mario Cazzola22, Andreas Reiter23, Claire Harrison24, Peter J. Campbell25, Anthony R. Green26, Alessandro M. Vannucchi6, Nicholas C.P. Cross4
1Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
3Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
4Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
5Department of Haematology, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
6Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Florence, 50134, Italy
7Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds, LS9 7TF, UK
8Department of Haematology, Royal Bournemouth Hospital, Bournemouth, BH7 7DW, UK
9Department of Haematology, University Hospital Southampton, Southampton SO16 6YD, UK,
10Oxford Biomedical Research Centre, Molecular Diagnostic Laboratory, Oxford University Hospitals NHS Trust, Oxford, OX3 7LE, UK
11Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
12School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
13Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
14Department of Haematology, UCL Cancer Institute, London, WC1 E6BT, UK
15MLL Munich Leukaemia Laboratory, Munich, 81377, Germany
16Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
17Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
18Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, 21224-6825, Maryland, USA
19Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, 50122, Italy
20Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, 1090, Austria
21Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia, 27100, Italy
22Department of Molecular Medicine, University of Pavia, Pavia, Italy
23III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, 68167, Germany
24Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, SE1 9RT, UK
25Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
26Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK

Tóm tắt

AbstractClonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations inJAK2,CALRorMPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance inJAK2V617F-negative MPN: rs12339666 (JAK2;meta-analysisP=1.27 × 10−10) and rs2201862 (MECOM; meta-analysisP=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when includingJAK2V617F-positive cases. rs9376092 has a stronger effect inJAK2V617F-negative cases withCALRand/orMPLmutations (Breslow–DayP=4.5 × 10−7), whereas inJAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelicχ2P=7.3 × 10−7). ReducedMYBexpression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences inMYBexpression to disease phenotype.

Từ khóa


Tài liệu tham khảo

Vardiman, J. W., Harris, N. L. & Brunning, R. D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100, 2292–2302 (2002) .

Klampfl, T. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. New Engl. J. Med. 369, 2379–2390 (2013) .

Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. New Engl. J. Med. 369, 2391–2405 (2013) .

Landgren, O. et al. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood 112, 2199–2204 (2008) .

Bellanné-Chantelot, C. et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 108, 346–352 (2006) .

Rumi, E. et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J. Clin. Oncol. 25, 5630–5635 (2007) .

Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 41, 446–449 (2009) .

Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 41, 450–454 (2009) .

Olcaydu, D. et al. The 'GGCC' haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23, 1924–1926 (2009) .

Jones, A. V. et al. The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115, 4517–4523 (2010) .

Oddsson, A. et al. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia 28, 1371–1374 (2014) .

Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003) .

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995) .

Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011) .

Qayyum, R. et al. A meta-analysis and genome-wide association study of platelet count and mean platelet volume in african americans. PLoS Genet. 8, e1002491 (2012) .

García, P. et al. Reduced c-Myb activity compromises HSCs and leads to a myeloproliferation with a novel stem cell basis. EMBO J. 28, 1492–1504 (2009) .

Chen, E. et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential JAK2 signalling. Cancer Cell 18, 524–535 (2010) .

Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012) .

Harrison, C. N. et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. New Engl. J. Med. 353, 33–45 (2005) .

Stegelmann, F. et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia 25, 1217–1219 (2011) .

Varricchio, L. et al. Increased frequency of the glucocorticoid receptor A3669G (rs6198) polymorphism in patients with Diamond-Blackfan anemia. Blood 118, 473–474 (2011) .

Poletto, V. et al. A3669G polymorphism of glucocorticoid receptor is a susceptibility allele for primary myelofibrosis and contributes to phenotypic diversity and blast transformation. Blood 120, 3112–3117 (2012) .

Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014) .

Secker-Walker, L. M., Mehta, A. & Bain, B. Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom Cancer Cytogenetic Group study. Br J. Haematol. 91, 490–501 (1995) .

Morishita, K., Parganas, E., Matsugi, T. & Ihle, J. N. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol. Cell Biol. 12, 183–189 (1992) .

Shimizu, S. et al. EVI1 is expressed in megakaryocyte cell lineage and enforced expression of EVI1 in UT-7/GM cells induces megakaryocyte differentiation. Biochem. Biophys. Res. Commun. 292, 609–616 (2002) .

Albers, C. A. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44, 435–439 S1-2 (2012) .

Emambokus, N. et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488 (2003) .

Wallrapp, C. et al. The product of the mammalian orthologue of the Saccharomyces cerevisiae HBS1 gene is phylogenetically related to eukaryotic release factor 3 (eRF3) but does not carry eRF3-like activity. FEBS Lett. 440, 387–392 (1998) .

Craig, J. E. et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat. Genet. 12, 58–64 (1996) .

Menzel, S. et al. The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood 110, 3624–3626 (2007) .

Ganesh, S. K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat. Genet. 41, 1191–1198 (2009) .

Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet. 41, 1182–1190 (2009) .

Ferreira, M. A. et al. Sequence variants in three loci influence monocyte counts and erythrocyte volume. Am. J. Hum. Genet. 85, 745–749 (2009) .

Frampton, M. et al. Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin's lymphoma. Nat. Commun. 4, 2549 (2013) .

Wahlberg, K. et al. The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 114, 1254–1262 (2009) .

Farrell, J. J. et al. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 117, 4935–4945 (2011) .

Stadhouders, R. et al. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J. 31, 986–999 (2012) .

Thein, S. L. et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc. Natl Acad. Sci. USA 104, 11346–1151 (2007) .

Lu, J. et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14, 843–853 (2008) .

Godfrey, A. L. et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 120, 2704–2707 (2012) .

Zaleskas, V. M. et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2V617F. PLoS ONE 1, e18 (2006) .

Klampfl, T. et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118, 167–176 (2011) .

Holle, R., Happich, M., Löwel, H. & Wichmann, H. E. MONICA/KORA Study Group. KORA--a research platform for population based health research. Gesundheitswesen 67, S19–S25 (2005) .

Ferrucci, L. et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J. Am. Geriatr. Soc. 48, 1618–1625 (2000) .

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007) .

Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language: A Programming Environment for Data Analysis and Graphics Wadsworth & Brooks/Cole (1988) .

Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005) .

Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010) .

Ma, X., Vanasse, G., Cartmel, B., Wang, Y. & Selinger, H. A. Prevalence of polycythemia vera and essential thrombocythemia. Am. J. Hematol. 83, 359–362 (2008) .

Harris, R. et al. Metan: fixed- and random-effects meta-analysis. Stat. J. 8, 3–28 (2008) .

Thompson, S. G. & Higgins, J. P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002) .

Matakidou, A. et al. Risk of non-medullary thyroid cancer influenced by polymorphic variation in the thyroglobulin gene. Carcinogenesis 25, 369–373 (2004) .

Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007) .

Staaf, J. et al. Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. Genome Biol. 9, R136 (2008) .

Jones, A. V. et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood 107, 3339–3341 (2006) .

Harrison, C. N. et al. Guideline for investigation and management of adults and children presenting with a thrombocytosis. Br. J. Haematol. 149, 352–375 (2010) .

Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45 (2001) .

Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014) .

Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012) .

ENCODE Project Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012) .

Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010) .

Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012) .

Paul, D. S. et al. Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits. PLoS Genet. 7, e1002139 (2011) .

Paul, D. S. et al. Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci. Genome Res. 23, 1130–1141 (2013) .

Watkins, N. A. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113, e1–e9 (2009) .

Bagger, F. O. et al. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis. Nucleic Acids Res. 41, D1034–D1039 (2013) .

Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011) .

Yang, T. P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010) .