Brittle to quasi-brittle transition and crack initiation precursors in crystals with structural Inhomogeneities

Materials Theory - Tập 3 - Trang 1-23 - 2019
S. Papanikolaou1,2, P. Shanthraj3, J. Thibault1, C. Woodward4, F. Roters3
1Department of Mechanical &; Aerospace Engineering, West Virginia University, Morgantown, USA
2Department of Physics & Astronomy, West Virginia University, Morgantown, USA
3Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
4Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, USA

Tóm tắt

Crack initiation emerges due to a combination of elasticity, plasticity, and disorder, and it displays strong dependence on the material’s microstructural details. The characterization of the structural uncertainty in the original microstructure is typically empirical and systematic characterization protocols are lacking. In this paper, we propose an investigational tool in the form of the curvature of an ellipsoidal notch: As the radius of curvature at the notch increases, there is a dynamic phase transition from notch-induced crack initiation to disorder-induced crack nucleation. We argue that the this transition may unveil the characteristic length scale of structural disorder in the material. We investigate brittle but elastoplastic metals with continuum, microstructural disorder that could originate in a manufacturing process, such as alloying. We perform extensive and realistic simulations, using a phase-field approach coupled to crystal plasticity, where microstructural disorder and notch width are systematically varied. We identify the brittle-to-quasi-brittle transition for various disorder strengths in terms of the damage and stress evolution. Moreover, we investigate precursors to crack initiation that we quantify in terms of the expected stress drops during displacement control loading.

Tài liệu tham khảo

M.J. Alava, P.K. Nukala, S. Zapperi, Role of disorder in the size scaling of material strength. Phys. Rev. Lett. 100(5), 055502 (2008) M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Size effects in statistical fracture. J. Phys. D. Appl. Phys. 42, 214012 (2009) I.S. Aranson, V.A. Kalatsky, V.M. Vinokur, Continuum field description of crack propagation. Phys. Rev. Lett. 85(1), 118 (2000) R.J. Asaro, Crystal plasticity. J. Appl. Mech. 50(4b), 921–934 (1983) Asaro, R. J, Lubarda V.. Mechanics of Solids and Materials. Cambridge University Press, 2006 Z.P. Bažant, Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. 110(4), 518–535 (1984) Z.P. Bažant, Fracture in Concrete and Reinforced Concrete (1985) Z.P. Bažant, Size effect aspects of measurement of fracture characteristics of quasi-brittle material. Adv. Cem. Based Mater. 4(3–4), 128–137 (1996) Z.P. Bažant, J.-L. Le, M.Z. Bazant, Scaling of strength and lifetime probability distributions of Quasi-brittle structures based on atomistic fracture mechanics. Proc. Natl. Acad. Sci. 106(28), 11484–11489 (2009) Z.P. Bažant, Z. Li, Zero-Brittleness Size-Effect Method for One-Size Fracture Test of Concrete. J. Eng. Mech. 122(5), 458–468 (1996). https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(458) Z.P. Bažant, B.H. Oh, Crack band theory for fracture of concrete. Mater. Constr. 16(3), 155–177 (1983) Z.P. Bažant, P.A. Pfeiffer, in Proceedings of the second symposium on interaction of non-nuclear munition with structures, Florida, USA. Test of shear fracture and strain-softening in concrete (1985), pp. 254–264 Z.P. Bažant, J. Planas, Fracture and Size Effect in Concrete and Other Quasi-Brittle Structures (1998) Z.P. Bažant, M.R. Tabbara, M.T. Kazemi, G. Pijaudier-Cabot, Random particle model for fracture of aggregate or fiber composites. J. Eng. Mech. 116(8), 1686–1705 (1990) Z.P. Bažant, Q. Yu, Size effect in fracture of concrete specimens and structures: New problems and progress. Acta. Polytechnica. 44(5–6) (2004) J.P. Campbell, R.O. Ritchie, K.T.V. Rao, The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics. Metallurgical Mater. Trans. A 30(3), 563–577 (1999) L.R. Carney, J.J. Mecholsky, Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel. Mater. Sci. Appl. 4(04), 258 (2013) A. Carpinteri, Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Eng. Fract. Mech. 26, 143–155 (1987) A. Carpinteri, R. Brighenti, A. Spagnoli, Size effect in beams with rounded-tip V-notch. Mater. Sci. 32(3), 325 (1996) H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15(4), 191–215 (2013) D.M. Dimiduk, Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials. Mater. Sci. Eng. A 263(2), 281–288 (1999) M.L. Dunn, W. Suwito, S.J. Cunningham, Stress Intensities at notch singularities. Eng. Fracture Mech. 57(4), 417–430 (1997a) M.L. Dunn, W. Suwito, S.J. Cunningham, Fracture initiation at sharp notches: correlation using critical stress intensities. Int. J. Solids Structures 34(29), 3873–3883 (1997b) F.G. Evans, in Charles C. Thomas Publisher. Mechanical properties of bone. 881 (1973) D.L. Grote, S.W. Park, M. Zhou, Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. Int. J. Impact Eng. 25(9), 869–886 (2001) J. Han, S. Xiao, J. Tian, Y. Chen, L. Xu, X. Wang, Y. Jia, Z. Du, S. Cao, Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy. Mater. Charact. 106, 112–122 (2015) E.B. Herbold, J.B. Jordan, N.N. Thadhani, Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+ Ni. Acta Mater. 59(17), 6717–6728 (2011) D. Hu, Effect of composition on grain refinement in TiAl-based alloys. Intermetallics 9(12), 1037–1043 (2001) C.E. Inglis, "Stresses in a plate due to the presence of cracks and sharp corners." Trans Inst Naval Archit. 55, 219–241 (1913) Y.-W. Kim, Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM J. Miner. Met. Mater. Soc. 46(7), 30–39 (1994) Y.-W. Kim, D.M. Dimiduk, Progress in the understanding of gamma titanium aluminides. JOM J. Miner. Met. Mater. Soc. 43(8), 40–47 (1991) C. Kirsch, "Die theorie der elastizitat und die bedurfnisse der festigkeitslehre." Zeitschrift des Vereines Deutscher Ingenieure. 42, 797–807 (1898) Lapin, J. "TiAl-based alloys: Present status and future perspectives." Conference proceedings METAL, vol. 19, 21.5, (2009) S. Lay, A.-R. Yavari, Evidence for disordered character of grain boundaries in a Ni3Al-based alloy during reordering. Acta Mater. 44(1), 35–41 (1996) Mandelbrot, B. B. "Fractals: form, chance and dimension." Fractals: form, chance and dimension., by Mandelbrot, BB. San Francisco (CA, USA): WH Freeman & Co., 16+ 365 p. (1979) B.B. Mandelbrot, D.E. Passoja, A.J. Paullay, Fractal character of fracture surfaces of metals. Nature 308(5961), 721 (1984) S. Ochiai, S. Kuboshima, K. Morishita, H. Okuda, T. Inoue, Fracture toughness of Al 2 O 3 fibers with an artificial notch introduced by a focused-ion-beam. J. Eur. Ceramic Soc. 30(7), 1659–1667 (2010) S. Papanikolaou, C. Yinan, N. Ghoniem, Avalanches and plastic flow in crystal plasticity: an overview. Model. Simul. Mater. Sci. Eng. 26(1), 013001 (2017) R.O. Ritchie, J.O. Peters, Small fatigue cracks: Mechanics, mechanisms and engineering applications. Mater. Trans. 42(1), 58–67 (2001) F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius, S. Nikolov, DAMASK–The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput. Mater. Sci. 158, 420–478 (2019) E. Schlangen, J. Van Mier, Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement Concrete Composites 14(2), 105–118 (1992) E. Schlangen, E.J. Garboczi, Fracture simulations of concrete using lattice models: computational aspects. Eng. Fracture Mech. 57(2), 319–332 (1997) H.E.J.G. Schlangen, Experimental and numerical analysis of fracture processes in concrete. HERON 38(2), 1993 (1993) P. Shanthraj, O. Rezvanian, M.A. Zikry, Electrothermomechanical finite-element modeling of metal microcontacts in MEMS. J. Microelectromech. Syst. 20(2), 371–382 (2011) P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, D. Raabe, A phase field model for damage in elasto-viscoplastic materials. Comput. Methods Appl. Mech. Eng. 312, 167–185 (2016) L. Skarynski, J. Tejchman, Calculations of fracture process zones on Meso-scale in notched concrete beams subjected to three-point bending. Eur. J. Mech. A/Solids 29, 746–760 (2010). https://doi.org/10.1016/j.euromechsol.2010.02.008 N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics. Intermetallics 8(9), 1313–1320 (2000) Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin, S. Babu, Rationalization of microstructure heterogeneity in Inconel 718 builds made by the direct laser additive manufacturing process. Metall. Mater. Trans. A 45(10), 4470–4483 (2014) I. Tikhovskiy, D. Raabe, F. Roters, Simulation of earing during deep drawing of an Al–3% mg alloy (AA 5754) using a texture component crystal plasticity FEM. J. Mater. Process. Technol. 183(2), 169–175 (2007) A.A. Tseng, Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14(4), R15 (2004) S.K. Vajpai, K. Ameyama, A novel powder metallurgy processing approach to prepare fine-grained Ti-rich TiAl-based alloys from pre-alloyed powders. Intermetallics 42, 146–155 (2013) P.F. Walsh, Fracture of plain concrete. Indian Concrete J. 46(11) (1972) L. Wang, J. Shen, Y. Zhang, H. Fu, Microstructure, fracture toughness and compressive property of as-cast and directionally solidified NiAl-based eutectic composite. Mater. Sci. Eng. A 664, 188–194 (2016) K. Weierstrass, Uber continuierliche Functionen eines reellen Argumentes, die für keinen Werth des lezteren einen bestimmten Differentialquotient besitzen (Math, Werke II, 1895) M.L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 74, 526–528 (1952) A.T. Zehnder, Fracture Mechanics (Lecture Notes in Applied and Computational Mechanics) (2012) L. Zhu, Z.F. Xu, P. Liu, Y.F. Gu, Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy. Opt. Laser Technol. 98, 409–415 (2018)