Cyclic stretch enhances the expression of Toll-like Receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-κB pathway
Tóm tắt
Toll-like receptor 4 (TLR4) plays an important role in innate immunity. The role of TLR4 in stretched cardiomyocytes is not known. We sought to investigate whether mechanical stretch could regulate TLR4 expression, as well as the possible molecular mechanisms and signal pathways mediating the expression of TLR4 by cyclic mechanical stretch in cardiomyocytes. Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Western blot, real-time polymerase chain reaction, and promoter activity assay were performed. In vitro monocyte adhesion to stretched myocyte was detected. Cyclic stretch significantly increased TLR4 protein and mRNA expression after 2 h to 24 h of stretch. Addition of SB203580, TNF-α antibody, and p38α MAP kinase siRNA 30 min before stretch inhibited the induction of TLR4 protein. Cyclic stretch increased, while SB203580 abolished the phosphorylated p38 protein. Gel shifting assay showed significant increase of DNA-protein binding activity of NF-κB after stretch and SB203580 abolished the DNA-protein binding activity induced by cyclic stretch. DNA-binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased TLR4 promoter activity while SB203580 and NF-κB siRNA decreased TLR4 promoter activity. Cyclic stretch increased adhesion of monocyte to cardiomyocytes while SB203580, TNF-α antibody, and TLR4 siRNA attenuated the adherence of monocyte. TNF-α and Ang II significantly increased TLR4 protein expression. Addition of losartan, TNF-α antibody, or p38α siRNA 30 min before Ang II and TNF-α stimulation significantly blocked the increase of TLR4 protein by AngII and TNF-α. Cyclic mechanical stretch enhances TLR4 expression in cultured rat neonatal cardiomyocytes. The stretch-induced TLR4 is mediated through activation of p38 MAP kinase and NF-κB pathways. TLR4 up-regulation by cyclic stretch increases monocyte adherence.
Tài liệu tham khảo
Medzhitov R, Preston-Hurlburt P, Janeway CA: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997, 388: 394-397. 10.1038/41131.
Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, Fullerton DA, Meng X: Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg. 2008, 85: 1678-1685. 10.1016/j.athoracsur.2008.01.043.
Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA: Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999, 104: 271-280. 10.1172/JCI6709.
Boyd JH, Mathur S, Wang Y, Bateman RM, Walley ER: Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res. 2006, 72: 384-393. 10.1016/j.cardiores.2006.09.011.
Oyama J, Blais C, Liu X, Pu M, Kobzik L, Kelly RA, Bourcier T: Reduced myocardial ischemia-reperfusion injury in toll-like 4-deficient mice. Circulation. 2004, 109: 784-789. 10.1161/01.CIR.0000112575.66565.84.
Samantha A, Tavener SA, Kubes P: Is there a role for cardiomyocyte toll-like receptor 4 in endotoxemia?. Trends Cardiovasc Med. 2005, 15: 153-157. 10.1016/j.tcm.2005.06.001.
Tavener SA, Long EM, Robbins SM, McRae KM, Van Remmen H, Kubes P: Immune cell toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res. 2004, 95: 700-707. 10.1161/01.RES.0000144175.70140.8c.
Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C: Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res. 2005, 68: 224-234. 10.1016/j.cardiores.2005.05.025.
Raid A, Bien S, Gratz M, Escher F, Westermann D, Heimesaat MM, Bereswill S, Krieg T, Felix SB, Schultheiss HP, Kroemer HK, Tschope C: Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail. 2008, 10: 233-243. 10.1016/j.ejheart.2008.01.004.
Comstock KL, Krown KA, Page MT, Martin D, Ho P, Pedraza M, Castro EN, Nakajima N, Glembotski CC, Quintana PJ, Sabbadini RA: LPS-induced TNF-alpha release from and apoptosis in rat cardiomyocytes: obligatory role for CD14 in mediating the LPS response. J Mol Cell Cardiol. 1998, 30: 2761-2775. 10.1006/jmcc.1998.0851.
Wright G, Singh IS, Hasday JD, Farrance IK, Hall G, Cross AS, Rogers TB: Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. Am J Physiol Heart Circ Physiol. 2002, 282: H872-H879.
Anker SD, van Haehling: Inflammatory mediators in chronic heart failure: an overview. Heart. 2004, 90: 464-470. 10.1136/hrt.2002.007005.
Linde A, Mosier D, Blecha F, Melgarejo T: Innate immunity and inflammation--new frontiers in comparative cardiovascular pathology. Cardiovasc Res. 2007, 73: 26-36. 10.1016/j.cardiores.2006.08.009.
Kuwahara F, Kai H, Tokuda K, Niiyama H, Tahara N, Kusaba K, Takemiya K, Jalalidin A, Koga M, Nagata T, Shibata R, Imaizumi T: Roles of intercellular adhesion molecule-1 in hypertensive cardiac remodeling. Hypertension. 2003, 41: 819-823. 10.1161/01.HYP.0000056108.73219.0A.
Chang H, Wang BW, Kuan P, Shyu KG: Cyclical mechanical stretch enhances angiopoietin-2 and Tie2 receptor expression in cultured human umbilical vein endothelial cells. Clin Sci. 2003, 104: 421-428. 10.1042/CS20020210.
Shyu KG, Chao YM, Wang BW, Kuan P: Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension. 2005, 46: 614-621. 10.1161/01.HYP.0000175811.79863.e2.
Shyu KG, Chen CC, Wang BW, Kuan PL: Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol. 2001, 33: 691-698. 10.1006/jmcc.2000.1333.
Sabroe I, Dower SK, Whyte MKB: The role of toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis. 2005, 41: S421-S426. 10.1086/431992.
Simms MG, Walley KR: Activated macrophages decrease rat cardiac myocyte contractility: importance of ICAM-1-dependnet adhesion. Am J Physiol Heart Circ Physiol. 1999, 277: H253-H260.
Tavener S, Kubes P: Cellular and molecular mechanisms underlying LPS-associated myocyte impairement. Am J Physiol Heart Circ Physiol. 2006, 290: H800-H806. 10.1152/ajpheart.00701.2005.
Hua F, Ha T, Ma J, Li Y, Kelley J, Gao X, Browder IW, Kao RL, Williams DL, Li C: Protection against myoocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinostide 3-kinase-dependent mechanism. J Immunol. 2007, 178: 7317-7324.
Bruns B, Maass D, Barber R, Horton J, Carison D: Alteration in the cardiac inflammatory response to burn trauma in mice lacking a functiona; toll-like receptor 4 gene. Shock. 2008, 30: 740-746. 10.1097/SHK.0b013e318173f329.
Shyu KG: Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci. 2009, 116: 377-389. 10.1042/CS20080163.
Wolf G, Bohlender J, Bondeva T, Roger T, Thaiss F, Wenzel UO: Angiotensin II upregulates toll-like receptor 4 on mesanginal cells. J Am Soc Nephrol. 2006, 17: 1585-1593. 10.1681/ASN.2005070699.
De Kleijn D, Pasterkamp G: Toll-liker receptors in cardiovascular diseases. Cardiovasc Res. 2003, 60: 58-67. 10.1016/S0008-6363(03)00348-1.
Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007, 115: 1599-1608. 10.1161/CIRCULATIONAHA.106.603431.
Zhang G, Ghosh S: Toll-like receptor-mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest. 2001, 107: 13-19. 10.1172/JCI11837.