Resveratrol differentially modulates inflammatory responses of microglia and astrocytes
Tóm tắt
Inflammatory responses in the CNS mediated by activated glial cells play an important role in host-defense but are also involved in the development of neurodegenerative diseases. Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect microglia and astrocyte from inflammatory insults and explored mechanisms underlying different inhibitory effects of resveratrol on microglia and astrocytes.
A murine microglia cell line (N9), primary microglia, or astrocytes were stimulated by LPS with or without different concentrations of resveratrol. The expression and release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1) and iNOS/NO by the cells were measured by PCR/real-time PCR and ELISA, respectively. The phosphorylation of the MAP kinase superfamily was analyzed by western blotting, and activation of NF-κB and AP-1 was measured by luciferase reporter assay and/or electrophoretic mobility shift assay.
We found that LPS stimulated the expression of TNF-α, IL-1β, IL-6, MCP-1 and iNOS in murine microglia and astrocytes in which MAP kinases, NF-κB and AP-1 were differentially involved. Resveratrol inhibited LPS-induced expression and release of TNF-α, IL-6, MCP-1, and iNOS/NO in both cell types with more potency in microglia, and inhibited LPS-induced expression of IL-1β in microglia but not astrocytes. Resveratrol had no effect on LPS-stimulated phosphorylation of ERK1/2 and p38 in microglia and astrocytes, but slightly inhibited LPS-stimulated phosphorylation of JNK in astrocytes. Resveratrol inhibited LPS-induced NF-κB activation in both cell types, but inhibited AP-1 activation only in microglia.
These results suggest that murine microglia and astrocytes produce proinflammatory cytokines and NO in response to LPS in a similar pattern with some differences in signaling molecules involved, and further suggest that resveratrol exerts anti-inflammatory effects in microglia and astrocytes by inhibiting different proinflammatory cytokines and key signaling molecules.
Từ khóa
Tài liệu tham khảo
Perry VH, Gordon S: Macrophages and microglia in the nervous system. Trends Neurosc. 1988, 11: 273-277. 10.1016/0166-2236(88)90110-5.
Aloisi F: The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol. 1999, 468: 123-133.
Chen Y, Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003, 23: 137-149. 10.1097/00004647-200302000-00001.
McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol. 2001, 169: 219-230. 10.1006/exnr.2001.7688.
Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM: Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res. 2002, 133: 27-35. 10.1016/S0165-3806(01)00315-7.
Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004, 279: 1415-1421. 10.1074/jbc.M307657200.
Matsumoto Y, Ohmori K, Fujiwara M: Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunol. 1992, 37: 23-33. 10.1016/0165-5728(92)90152-B.
Zeinstra E, Wilczak N, De Keyser J: Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2. J Neuroimmunol. 2003, 135: 166-171. 10.1016/S0165-5728(02)00462-9.
McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988, 38: 1285-1291.
Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH: Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. Eur J Neurosci. 2003, 18: 2731-2742. 10.1111/j.1460-9568.2003.03014.x.
Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D: Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989, 24: 173-182. 10.1016/0165-5728(89)90115-X.
Merrill JE, Chen IS: HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J. 1991, 5: 2391-2397.
Bhat KP, Pezzuto JM: Cancer chemopreventive activity of resveratrol. Ann N Y Acad Sci. 2002, 57: 210-229. 10.1111/j.1749-6632.2002.tb02918.x.
Das DK, Maulik N: Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interv. 2006, 6: 36-47. 10.1124/mi.6.1.7.
Ates O, Cayli SR, Yucel N, Altinoz E, Kocak A, Durak MA, Turkoz Y, Yologlu S: Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J Clin Neurosci. 2007, 14: 256-260. 10.1016/j.jocn.2005.12.010.
Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE: Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem Int. 2009, 54: 111-118. 10.1016/j.neuint.2008.10.008.
de la Lastra CA, Villegas I: Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005, 49: 405-430. 10.1002/mnfr.200500022.
Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF: Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide. 2003, 9: 64-76. 10.1016/j.niox.2003.09.005.
Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF: Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol. 2005, 5: 185-193. 10.1016/j.intimp.2004.08.008.
Candelario-Jalil E, de Oliveira AC, Gräf S, Bhatia HS, Hüll M, Muñoz E, Fiebich BL: Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation. 2007, 4: 25-10.1186/1742-2094-4-25.
Kim YA, Kim GY, Park KY, Choi YH: Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. J Med Food. 2007, 10: 218-24. 10.1089/jmf.2006.143.
Xu J, Drew PD: 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol. 2006, 171: 135-144. 10.1016/j.jneuroim.2005.10.004.
Corradin SB, Mauel J, Donini SD, Quattrocchi E, Ricciardi-Castagnoli P: Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia. 1993, 7: 255-262. 10.1002/glia.440070309.
Zhang W, Qin L, Wang T, Wei SJ, Gao HM, Liu J, Wilson B, Liu B, Zhang W, Kim HC, Hong JS: 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J. 2005, 19: 395-397.
Zhu J, Wang O, Ruan L, Hou X, Cui Y, Wang JM, Le Y: The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits leukocyte activation by bacterial formylpeptide through the receptor FPR. Int Immunopharmacol. 2009, 9: 1126-1130. 10.1016/j.intimp.2009.05.002.
Zhou YL, Snead ML: Identification of CCAAT/enhancer-binding protein alpha as a transactivator of the mouse amelogenin gene. J Biol Chem. 2000, 275: 12273-12280. 10.1074/jbc.275.16.12273.
Weber CK, Liptay S, Wirth T, Adler G, Schmid RM: Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta. Gastroenterology. 2000, 119: 1209-1218. 10.1053/gast.2000.19458.
Hahm ER, Cheon G, Lee J, Kim B, Park C, Yang CHL: New and known symmetrical curcumin derivatives inhibit the formation of Fos-Jun-DNA complex. Cancer Lett. 2002, 184: 89-96. 10.1016/S0304-3835(02)00170-2.
Calderoni AM, Biaggio V, Acosta M, Oliveros L, Mohamed F, Giménez MS: Cadmium exposure modifies lactotrophs activity associated to genomic and morphological changes in rat pituitary anterior lobe. Biometals. 2010, 23: 135-143. 10.1007/s10534-009-9274-8.
Aderem A, Ulevitch RJ: Toll-like receptors in the induction of the innate immune response. Nature. 2000, 406: 782-787. 10.1038/35021228.
Ortega-Gutierrez S, Molina-Holgado E, Guaza C: Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia. 2005, 52: 163-168. 10.1002/glia.20229.
Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK: c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia. 2005, 50: 235-246. 10.1002/glia.20173.
Li Y, Liu L, Barger SW, Mrak RE, Griffin WS: Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res. 2001, 66: 163-170. 10.1002/jnr.1208.
Uesugi M, Nakajima K, Tohyama Y, Kohsaka S, Kurihara T: Nonparticipation of nuclear factor kappa B (NFkappaB) in the signaling cascade of c-Jun N-terminal kinase (JNK)- and p38 mitogen-activated protein kinase (p38MAPK)-dependent tumor necrosis factor alpha (TNFalpha) induction in lipopolysaccharide (LPS)-stimulated microglia. Brain Res. 2006, 1073-1074: 48-59. 10.1016/j.brainres.2005.12.043.
Jeng KC, Hou RC, Wang JC, Ping LI: Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett. 2005, 97: 101-106. 10.1016/j.imlet.2004.10.004.
Bhat NR, Zhang P, Lee JC, Hogan EL: Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 1998, 18: 1633-1641.
Pahan K, Sheikh FG, Khan M, Namboodiri AM, Singh I: Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes. J Biol Chem. 1998, 273: 2591-2600. 10.1074/jbc.273.5.2591.
Pawate S, Bhat NR: C-Jun N-terminal kinase (JNK) regulation of iNOS expression in glial cells: predominant role of JNK1 isoform. Antioxid Redox Signal. 2006, 8: 903-909. 10.1089/ars.2006.8.903.
Kundu JK, Surh YJ: Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat Res. 2004, 55: 65-80.
Kundu JK, Surh YJ: Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 2008, 269: 243-261. 10.1016/j.canlet.2008.03.057.
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23: 2369-2380. 10.1038/sj.emboj.7600244.
Shen Z, Ajmo JM, Rogers CQ, Liang X, Le L, Murr MM, Peng Y, You M: Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines. Am J Physiol Gastrointest Liver Physiol. 2009, 296: G1047-G1053. 10.1152/ajpgi.00016.2009.
Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH: Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol. 2005, 175: 3339-3346.
Young MR, Yang HS, Colburn NH: Promising molecular targets for cancer prevention: AP-1, NF-kappa B and Pdcd4. Trends Mol Med. 2003, 9: 36-41. 10.1016/S1471-4914(02)00009-6.