Enhancement of the transdermal delivery of zidovudine by pretreating the skin with two physical enhancers: microneedles and sonophoresis

DARU Journal of Pharmaceutical Sciences - Tập 29 - Trang 279-290 - 2021
Irene de Jesús Martínez-Segoviano1, Adriana Ganem-Rondero1
1División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico

Tóm tắt

Zidovudine (AZT) has been the most widely used drug for antiretroviral therapy. In order to improve the therapy with this drug, different alternatives have been proposed, such as the transdermal administration. The use of permeation enhancers is necessary to favor the passage of this drug through the skin, due to its physicochemical properties and to the natural permeation barrier imposed by the skin. To evaluate the effect of two permeation enhancers, sonophoresis and microneedles, on the permeability of AZT through the skin. Permeation studies with an AZT solution were performed using pigskin clamped in Franz-type cells. Sonophoresis was applied under different conditions (i.e., amplitude, duty cycle and application time), selected according to an experimental design, where the response variables were the increase in temperature of the skin surface and the increase in transepidermal water loss. ATR-FTIR was also used to demonstrate the effect of enhancers on membrane components. The permeability of AZT through intact skin was very poor, with a very long lag time. Pretreatment of the skin with sonophoresis increased AZT transport significantly, reducing the lag time. The maximum flux (27.52 µgcm−2 h−1) and the highest total amount permeated (about 624 µg/cm2) were obtained when applying sonophoresis in continuous mode, with an amplitude of 20%, and an application time of 2 min. Sonophoresis appears to have an impact on stratum corneum proteins. The use of microneedles further increased the flux (30.41 µgcm−2 h−1) and the total amount permeated (about 916 µg/cm2), relative to sonophoresis. The results are encouraging in terms of promoting AZT transport through the skin using sonophoresis or microneedles as permeation enhancers.

Tài liệu tham khảo

The Global HIV/AIDS Epidemic. In: Global Statistics. HIV.gov. 2020. https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics. Date last updated: July 07, 2020. Zidovudine C10H13N5O4 - PubChem – NIH, National Library of Medicine, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Zidovudine, accessed October 6, 2020. Negromonte Azevedo L, de Alencar Ximenes RA, Monteiro P, Ramos Montarroyos U, de Barros M-F. Factors associated to modification of first-line antiretroviral therapy due to adverse events in people living with HIV/AIDS. Brazilian J Infect Dis. 2020;24:65–72. https://doi.org/10.1016/j.bjid.2019.11.002. Mulenga V, Musiime V, Kekitiinwa A, Cook AD, Abongomera G, Kenny J, Chabala C, Mirembe G, Asiimwe A, Owen-Powell E, Burger D, McIlleron H, Klein N, Chintu C, Thomason MJ, Kityo C, Walkert AS, Gibb DM. Abacavir, zidovudine, or stavudine as paediatric tablets for African HIV-infected children (CHAPAS-3): an open-label, parallel-group, randomised controlled trial. Infection. 2016;16:169–79. https://doi.org/10.1016/S1473-3099(15)00319-9. Sosnik A, Chiappetta DA, Carcaboso AM. Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead. J Controlled Release. 2009;138:2–15. https://doi.org/10.1016/j.jconrel.2009.05.007. Seki T, Kawaguchi T, Juni K. Enhanced delivery of zidovudine through rat and human skin via ester prodrugs. Pharm Res. 1990;7:948–52. https://doi.org/10.1023/A:1015902024664. Seki T, Kawaguchi T, Juni K, Sugibayashi K, Morimoto Y. Sustained transdermal delivery of zidovudine via controlled release of penetration enhancer. J Controlled Release. 1991;17:41–8. Takmaz EA, Inal Ö, Baykara T. Studies on transdermal delivery enhancement of zidovudine. AAPS Pharm Sci Tech. 2009;10:88–97. https://doi.org/10.1208/s12249-008-9179-9. Mundargi RC, Babu VR, Rangaswamy V, Aminabhavi TM. Formulation and in vitro evaluation of transdermal delivery of zidovudine-an anti-HIV drug. J Appl Polym Sci. 2011;119:1268–74. https://doi.org/10.1002/app.30832. Souza de Araujo GR, de Oliveira Porfírio L, Santos Silva LA, Gomes Santana D, Ferreira Barbosa P, Pereira dos Santos C, Narain N, Vitorino Sarmento VH, de Souza Nunes R, Ting E, Moreira Lira AA. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids Surf B. 2020;188:110739. https://doi.org/10.1016/j.colsurfb.2019.110739. Abu-Izza KA, Garcia-Contreras L, Lu DR. Preparation and evaluation of sustained release AZT-loaded microspheres: optimization of the release characteristics using response surface methodology. J Pharm Sci. 1996;85:144–9. Menezes Carvalho AL, da Silva JA, Moreira Lira AA, Freire Conceicao TM, de Souza Nunes R, Cavalcanti de Albuquerque Junior LC, Vitorino Sarmento VH, Bastos Leal L, Pereira de Santana D. Evaluation of microemulsion and lamellar liquid crystalline systems for transdermal zidovudine delivery. J Pharm Sci. 2016;105:2188–93. https://doi.org/10.1016/j.xphs.2016.04.013. Carvalho FC, Sarmento VHV, Chiavacci LA, Barbi MS, Gremiao MPD. Development and in vitro evaluation of surfactant systems for controlled release of zidovudine. J Pharm Sci. 2010;99:2367–74. https://doi.org/10.1002/jps.22005. Löbenberg R, Araujo L, Kreuter J. Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur J Pharm Biopharm. 1997;44:127–32. Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G. Targeting of 3’-azido 3’-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res. 2001;18:467–73. Phillips NC, Tsoukas C. Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood. 1992;79:1137–43. Garg M, Jain NK. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Targeting. 2006;14:1–11. https://doi.org/10.1080/10611860500525370. Ruckmani K, Sankar V. Formulation and Optimization of Zidovudine Niosomes. AAPS Pharm Sci Tech. 2010;11:1119–27. https://doi.org/10.1208/s12249-010-9480-2. Thomas NS, Panchagnula R. Transdermal delivery of zidovudine: effect of vehicles on permeation across rat skin and their mechanism of action. Eur J Pharm Sci. 2003;18:71–9. Kumar Narishetty ST, Panchagnula R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Controlled Release. 2004;95–367–79. https://doi.org/10.1016/j.jconrel.2003.11.022. Kumar Narishetty ST, Panchagnula R. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J Controlled Release. 2005;102:59–70. https://doi.org/10.1016/j.jconrel.2004.09.016. Suwanpidokkul N, Thongnopnua P, Umprayn K. Transdermal delivery of zidovudine (AZT): The effects of vehicles, enhancers, and polymer membranes on permeation across cadaver pig skin. AAPS Pharm Sci Tech. 2004;5:1–8 (article 48). Wearley L, Chien YW. Enhancement of the in vitro skin permeability of azidothymidine (AZT) via iontophoresis and chemical enhancer. Pharm Res. 1990;7:34–40. https://doi.org/10.1023/A:1015827307516. Oh SY, Jeong SY, Park TG, Lee JH. Enhanced transdermal delivery of AZT (Zidovudine) using iontophoresis and penetration enhancer. J Controlled Release. 1998;51–161–8. Habte G, Hymete A, Ismail A. Simultaneous separation and determination of lamivudine and zidovudine in pharmaceutical formulations using the HPTLC method. Anal Lett. 2009;42:1552–70. https://doi.org/10.1080/00032710902993852. Jung ECh, Maibach HI. Animal models for percutaneous absorption. J Appl Toxicol. 2015;35:1–10. https://doi.org/10.1002/jat.3004. Mitragotri S. Sonophoresis: Ultrasound-Mediated Transdermal Drug Delivery. In: Dragicevic N, Maibach HI, editors. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Berlin Heidelberg: Springer Verlag; 2017. pp. 3–14. https://doi.org/10.1007/978-3-662-53273-7. Mitragotri S. Synergistic effect of enhancers for transdermal drug delivery. Pharm Res. 2000;17:1354–9. https://doi.org/10.1023/a:1007522114438. Lavon I, Grossman N, Kost J. The nature of ultrasound-SLS synergism during enhanced transdermal transport. J Controlled Release. 2005;107:484–94. https://doi.org/10.1016/j.jconrel.2005.06.011. Inactive Ingredient Search for Approved Drug Products. U.S. Food & Drug Administration. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. Accessed November 5, 2020. Machado M, Salgado TM, Hadgraft J, Lane ME. The relationship between transepidermal water loss and skin permeability. Int J Pharm. 2010;384:73–7. https://doi.org/10.1016/j.ijpharm.2009.09.044. Lavon I, Kost J. Ultrasound and transdermal drug delivery DDT. 2004;9:670–6. Machet L, Boucaud A. Phonophoresis: efficiency, mechanisms and skin tolerance. Int J Pharm. 2002;243:1–15. Seto JE, Polat BE, Lopez RFV, Blankschtein D, Langer R. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin. J Controlled Release. 2010;145:26–32. https://doi.org/10.1016/j.jconrel.2010.03.013. Dragicevic N, Atkinson JP, Maibach HI. Chemical penetration enhancers: Classification and mode of action. In: Dragicevic N, Maibach HI, editors. Percutaneous Penetration Enhancers. Chemical Methods in Penetration Enhancement. Berlin Heidelberg: Springer Verlag; 2015. pp. 11–27. https://doi.org/10.1007/978-3-662-47039-8. Piñón-Segundo E, Nava-Arzaluz MG, Ganem-Rondero A. Effect of the Use of Chemical Enhancers Combined with Sonophoresis, Electroporation, or Microneedles on Transdermal Drug Delivery. In: Dragicevic N, Maibach HI, editors. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Berlin Heidelberg: Springer Verlag; 2017. pp. 399–419. https://doi.org/10.1007/978-3-662-53273-7. Wolloch L, Kost J. The importance of microjet vs shock wave formation in sonophoresis. J Controlled Release. 2010;148:204–11. https://doi.org/10.1016/j.jconrel.2010.07.106. Pelucio-Lopes C, Machet L, Vaillant L, Lethiecq M, Furet Y, Pourcelot L, Lorette G. Phonophoresis of azidothymidine (AZT). Int J Pharm. 1993;96:249–52. https://doi.org/10.1016/0378-5173(93)90234-7. Mitragotri S. Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers. Adv Drug Deliver Rev. 2013;65:100–3. https://doi.org/10.1016/j.addr.2012.07.016. Nava-Arzaluz MG, Calderón-Lojero I, Quintanar-Guerrero D, Villalobos-García R, Ganem-Quintanar A. Microneedles as transdermal delivery systems: Combination with other enhancing strategies. Curr Drug Deliv. 2012;9:57–73. https://doi.org/10.2174/156720112798376078. Ita K. Transdermal delivery of drugs with microneedles: Strategies and outcomes. J Drug Deliv Sci Tec. 2015;29:16–23. https://doi.org/10.1016/j.jddst.2015.05.001. Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Tec. 2020;59:101923. https://doi.org/10.1016/j.jddst.2020.101923. Yamashita N, Tachibana K, Ogawa K, Tsujita N, Tomita A. Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat Rec. 1997;247:455–61. Boucaud A, Montharu J, Machet L, Arbeille B, Machet MC, Patat F, Vaillant L. Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec. 2001;264:114–9. Bernal-Chávez SA, Pérez-Carreto LY, Nava-Arzaluz MG, Ganem-Rondero A. Alkylglycerol derivatives, a new class of skin penetration modulators. Molecules. 2017;22(185):1–11. https://doi.org/10.3390/molecules22010185. Brancaleon L, Bamberg MP, Kollias N. Spectral differences between stratum corneum and sebaceous molecular components in the mid-IR. Appl Spectrosc. 2000;54:1175–82. https://doi.org/10.1366/0003702001950742. Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH. Skin permeability enhancement by low frequency sonophoresis: Lipid extraction and transport pathways. J Pharm Sci. 2003;92:1138–46. https://doi.org/10.1002/jps.10370.