Combi-protein coated microcrystals of lipases for production of biodiesel from oil from spent coffee grounds

Sustainable Chemical Processes - Tập 1 - Trang 1-9 - 2013
Aditi Banerjee1, Veena Singh2, Kusum Solanki3, Joyeeta Mukherjee2, Munishwar Nath Gupta4
1Department of Chemistry, University of Illinois Urbana Champaign, Urbana, USA
2Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, India
3Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, USA
4Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi Hauz Khas, India

Tóm tắt

Replacing chemical catalysts with biocatalysts is a widely recognized goal of white biotechnology. For biocatalytic processes requiring low water containing media, enzymes for example commercial preparations of lipases, show low catalytic efficiencies. Some high activity preparations for addressing this concern have been described. Protein coated microcrystals (PCMC) constitute one such preparation. The present work describes a Combi-PCMC for synthesis of biodiesel from the oil extracted from spent coffee grounds. Different lipases were screened for biodiesel synthesis from crude coffee oil out of which Novozym 435 gave the best conversion of 60% in 4 h. Optimization of reaction conditions i.e. % water, temperature and purification of coffee oil further enhanced conversion upto 88% in 24 h. A mixture of Novozym 435 and a cheap commercially available 1,3-specific lipase RMIM (from Mucor miehei) was used in different ratios and 1:1 was found to be the best trade-off between conversion and cost. The commercial preparations then were replaced by a novel biocatalyst design called Combi-Protein coated microcrystals (Combi-PCMC) wherein CAL B and Palatase were co-immobilized with K2SO4 as the core and this performed equivalent to the commercial preparations giving 83% conversion in 48 h. Coffee oil extracted from spent coffee grounds could be used for the synthesis of biodiesel by using appropriate commercial preparations of lipases. The expensive commercially immobilized preparations can also be replaced by a simpler and inexpensive immobilization design called combi-PCMC which synergizes the catalytic action of a nonspecific lipase CAL B and a free form of 1,3-specific lipase from Mucor miehei.

Tài liệu tham khảo

Straathof AJJ: Adlercreutz P (Eds): Applied Biocatalysis. 2000, London: Taylor and Francis Schoemaker HE, Mink D, Wubbolts MG: Dispelling the myths- biocatalysis in industrial synthesis. Science. 2003, 299: 1694-1697. 10.1126/science.1079237. Kapoor M, Gupta MN: Lipase Promiscuity and its biochemical applications. Process Biochem. 2012, 47: 555-569. 10.1016/j.procbio.2012.01.011. Linfield WM, O’Brien DJ, Serota S, Barauskas RA: Lipid- lipase interactions. I. Fat splitting with lipase from Candida rugosa. J Am Oil Chem Soc. 1984, 61: 1067-1071. 10.1007/BF02636222. Vulfson EN, Halling PJ: Holland HL (Eds): Enzymes In Nonaqueous Solvents. 2001, New Jersey: Humana Press Inc. Adlercreutz P: Immobilisation and application of lipases in organic media. Chem Soc Rev. 2013, 42: 6406-6436. 10.1039/c3cs35446f. Lee MY, Dordick JS: Enzyme activation for non-aqueous media. Curr Opin Biotechnol. 2002, 13: 376-384. 10.1016/S0958-1669(02)00337-3. Hudson EP, Eppler RK, Clark DS: Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol. 2005, 16: 637-643. 10.1016/j.copbio.2005.10.004. Clair NLS, Navia MA: Crosslinked enzyme crystals as robust biocatalyst. J Am Chem Soc. 1992, 114: 7314-7316. 10.1021/ja00044a064. Kreiner M, Moore BD, Parker MC: Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation. Chem Commun. 2001, 1096-1097. Lopez-Serrano P, Cao L, Van Rantwijk F, Sheldon RA: Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett. 2002, 24: 1379-1383. 10.1023/A:1019863314646. Sheldon RA, Schoevaart R, Van Langen LM: Crosslinked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform. 2005, 23: 141-147. 10.1080/10242420500183378. Shah S, Sharma A, Gupta MN: Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem. 2006, 351: 207-213. 10.1016/j.ab.2006.01.028. Shah S, Sharma A, Varandani D, Mehta BR, Gupta MN: A high performance lipase preparation: Characterization and atomic force microscopy. J Nanosci Nanotechnol. 2007, 7: 1-4. Majumder AB, Gupta MN: Increasing catalytic efficiency of Candida rugosa lipase for the synthesis of tert-alkyl butyrates in low-water media. Biocatal Biotransform. 2011, 29: 238-245. Kreiner M, Parker MC: Protein-coated micro crystals for use in organic solvents: application to oxidoreductases. Biotechnol Lett. 2005, 27: 1571-1577. 10.1007/s10529-005-1800-3. Hernández-Martín E, Otero C: Different enzyme requirements for the synthesis of biodiesel: Novozym® 435 and Lipozyme® TL IM. Bioresour Technol. 2008, 99: 277-286. 10.1016/j.biortech.2006.12.024. Rodrigues RC, Fernandez-Lafuente R: Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B: Enz. 2010, 64: 1-22. 10.1016/j.molcatb.2010.02.003. Mittelbach M, Remschmidt C: Biodiesel: The comprehensive handbook. 2004, M. Mittelbach, Graz: First Edition Shah S, Sharma S, Gupta MN: Biodiesel preparation by lipase catalyzed transesterification of Jatropha oil. Energy Fuels. 2004, 40: 1077-1082. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P: Production of biodiesel using immobilized lipase- a critical review. Crit Rev Biotechnol. 2008, 28: 253-264. 10.1080/07388550802428392. Robles- Medina A, González- Moreno PA, Esteban- Cerdán L, Molina- Grima E: Biocatalysis: Towards ever greener biodiesel production. Biotechnol Adv. 2009, 27: 398-408. 10.1016/j.biotechadv.2008.10.008. Antczak MS, Kubiak A, Antczak T, Bielecki S: Enzymatic biodiesel synthesis – key factors affecting efficiency of the process. Renew Energy. 2009, 34: 1185-1194. 10.1016/j.renene.2008.11.013. Demirbas A: Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Mgmt. 2009, 50: 923-927. 10.1016/j.enconman.2008.12.023. Tan T, Lu J, Nie K, Deng L, Wang F: Biodiesel production with immobilized lipase: A review. Biotechnol Adv. 2010, 28: 628-634. Zanette AF, Barellla RA, Pergher SBC, Treichel- Oliveira HD, Mazutti MA, Silva EA, Oliviera JV: Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts. Renew Energy. 2011, 36: 726-731. 10.1016/j.renene.2010.08.028. Bernal JM, Lozano P, García-Verdugo E, Isabel Burguete M, Sánchez-Gómez G, López-López G, Pucheault M, Vaultier M, Luis SV: Supercritical synthesis of biodiesel. Molecules. 2012, 17: 8696-8719. 10.3390/molecules17078696. Dacquin JP, Lee AF, Pireza C, Wilson K: Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chem Commun. 2012, 48: 212-214. 10.1039/c1cc14563k. Abduh MY, Van Ulden W, Kalpoe V, Van deBovenkamp HH, Manurung R, Heeres HJ: Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. Eur J Lipid Sci Technol. 2013, 115: 123-131. 10.1002/ejlt.201200173. Zhao H, Baker GA: Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol. 2013, 88: 3-12. 10.1002/jctb.3935. Dale BE: A level playing field for biofuels and bioproducts. Biofuel Bioprod Bioref. 2008, 2: 1-2. 10.1002/bbb.51. Hsu AF, Jones K, Foglia TA: Immobilized lipase catalyzed production of alkyl esters of restaurant grease as a biodiesel. Biotechnol Appl Biochem. 2002, 36: 181-186. 10.1042/BA20020007. Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G: Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using surface response methodology. Renew Energy. 2008, 33: 1678-1684. 10.1016/j.renene.2007.09.007. Enweremadu CC, Mbarawa MM: Technical aspects of production and analysis of biodiesel from used cooking oil- A review. Renew Sus Energy Rev. 2009, 13: 2205-2224. 10.1016/j.rser.2009.06.007. Oliveira LS, Franca AS, Camargos RRS, Ferraz VP: Coffee oil as a potential feedstock for biodiesel production. Bioresour Technol. 2008, 99: 3244-3250. 10.1016/j.biortech.2007.05.074. Kondamudi N, Mohapatra SK, Misra M: Spent coffee grounds as a versatile source of green energy. J Agric Food Chem. 2008, 56: 11757-11760. 10.1021/jf802487s. Calixto F, Fernades J, Couto R, Hernández EJ, Najdanovic- Visak V, Simoes PC: Synthesis of fatty acid methyl esters via direct transesterification with methanol/ carbon dioxide mixtures from spent coffee grounds feedstock. Green Chem. 2011, 13: 1196-1202. 10.1039/c1gc15101k. Araújo JMA, Sandi D: Extraction of coffee diterpenes and coffee oil using supercritical carbon dioxide. Food Chem. 2006, 101: 1087-1094. Nelson LA, Foglia TA, Marmer WN: Lipase-catalysed production of biodiesel. J Am Oil Chem Soc. 1996, 73: 1191-1195. 10.1007/BF02523383. Fukuda H, Kondo A, Noda H: Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001, 92: 405-416. Du W, Xu Y, Liu D, Zeng J: Improved methanol tolerance during Novozyme 435–mediated methanolysis of SODD for biodiesel production. J Mol Catal B Enzym. 2004, 30: 125-129. 10.1016/j.molcatb.2004.04.004. Shah S, Gupta MN: Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 2007, 42: 409-414. 10.1016/j.procbio.2006.09.024. Kumari V, Shah S, Gupta MN: Preparation of biodiesel by lipase catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels. 2007, 21: 368-372. 10.1021/ef0602168. Singh V, Solanki K, Gupta MN: Process optimization for biodiesel production. Recent Patent Biotechnol. 2008, 2: 130-143. 10.2174/187220808784619748. Tongboriboon K, Cheirsilp B, Kittikun AH: Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J Mol Catal B Enzym. 2010, 67: 52-59. 10.1016/j.molcatb.2010.07.005. Mendes AA, Oliveira PC, Vélez AM, Giordano RC, Giordano RL, De Castro HF: Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int J Biol Macromol. 2012, 50: 503-511. 10.1016/j.ijbiomac.2012.01.020. Gupta MN: Enzyme function in organic solvents. Eur J Biochem. 1992, 203: 25-32. 10.1111/j.1432-1033.1992.tb19823.x. Carrea G, Riva S: Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed. 2000, 39: 2226-2254. 10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L. Daglia M, Racchi M, Papetti A, Lanni C, Govoni S, Gazzani G: In vitro and ex vivo antihydroxyl radical activity of green and roasted coffee. J Agri Food Chem. 2004, 52: 1700-1704. 10.1021/jf030298n. Sharma A, Khare SK, Gupta MN: Three phase partitioning for extraction of oil from soybean. Bioresour Technol. 2002, 85: 327-329. 10.1016/S0960-8524(02)00138-4. Halling PJ: Thermodyanamic predictions for biocatalysis in nonconventional media: Theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol. 1994, 16: 178-206. 10.1016/0141-0229(94)90043-4. Pirrozi D, Greco G: Activity and stability of lipases in the synthesis of butyl lactate. Enzyme Microb Technol. 2004, 34: 94-100. 10.1016/j.enzmictec.2003.01.002. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y: Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil. Chem. Soc. 1999, 76: 789-792. 10.1007/s11746-999-0067-6. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y: Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc. 2000, 77: 355-360. 10.1007/s11746-000-0058-9. Belafi-Bako K, Kovacs F, Gubicza L, Hancsok J: Enzymatic Biodiesel Production from Sunflower Oil by Candida antarctica Lipase in a Solvent-free System. Biocatal Biotransform. 2002, 20: 437-439. 10.1080/1024242021000040855. Halling PJ: What can we learn by studying enzymes in non-aqueous media?. Phil Trans R Soc Lond B. 2004, 359: 1287-1297. 10.1098/rstb.2004.1505. Chang HM, Liao HF, Lee CC, Shieh CJ: Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. J Chem Technol Biotechnol. 2005, 80: 307-312. 10.1002/jctb.1166. Royon D, Daz M, Ellenrieder G, Locatelli S: Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol. 2007, 98: 648-653. 10.1016/j.biortech.2006.02.021. Sjursnes BJ, Anthonsen T: Acyl migration in 1,2-dibutyrin dependence on solvent and water activity. Biocatal Biotransform. 1994, 9: 285-297. 10.3109/10242429408992128. Sjursnes BJ, Kvittingen L, Anthonsen T: Regioselective lipase catalyzed transesterification of tributyrin: Influence of salt hydrates on acyl migration. J Am Oil Chem Soc. 1995, 92: 533-537. Govardhan CP: Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol. 1999, 10: 331-335. 10.1016/S0958-1669(99)80060-3. Shah S, Sharma A, Gupta MN: Cross-linked protein coated microcrystals as biocatalysts in non-aqueous solvents. Biocatal Biotransform. 2008, 26: 266-271. 10.1080/10242420801897429. Sheldon RA: Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol. 2011, 92: 467-477. 10.1007/s00253-011-3554-2. Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, Van Rantwijk F, Van der Wielen LAM, Sheldon RA: Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng. 2004, 87: 754-762. 10.1002/bit.20184. Mosbach K, Mattiasson B: Multistep enzyme systems. Methods in Enzymology. Edited by: Mosbach K. 1976, New York: Academic Press, 453-478. Vol XLIV Roy I, Gupta MN: Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym Microb Technol. 2004, 34: 26-32. 10.1016/j.enzmictec.2003.07.001. Dalal S, Kapoor M, Gupta MN: Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B Enzym. 2007, 44: 128-132. 10.1016/j.molcatb.2006.10.003. Dalal S, Sharma A, Gupta MN: A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J. 2007, 1: 16-19. 10.1186/1752-153X-1-16. Kilcawley KN, Wilkinson MG, Fox PF: Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzym Microb Technol. 2002, 31: 310-320. 10.1016/S0141-0229(02)00136-9. Jain P, Jain S, Gupta MN: A microwave assisted microassay for lipase. Anal Bioanal Chem. 2005, 381: 1480-1482. 10.1007/s00216-005-3105-8. Bradford MM: A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3. Ruppel T, Huybrighs T: Fatty acid methyl esters in B100 biodiesel by gas chromatography (Modified EN14103). 2008, Shelton CT, USA: Perkin Elmer, Inc Liu Y, Wang L: Biodiesel production from rapeseed deodorizer distillate in a packed column reactor. Chem Eng Process: Process Intens. 2009, 48: 1152-1156. 10.1016/j.cep.2009.04.001. Liu Y, Tan H, Zhang X, Yan Y, Hameed BH: Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. Chem Eng J. 2010, 157: 223-229. 10.1016/j.cej.2009.12.024.