The Use of Microcalorimetry to Measure Thermodynamic Parameters of the Binding of Ligands to Insulin

Springer Science and Business Media LLC - Tập 7 - Trang 606-611 - 1990
Scott E. McGraw1, Siegfried Lindenbaum1
1Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence

Tóm tắt

Flow microcalorimetry was used to measure the free energies, enthalpies, and entropies of interactions between the hormone insulin and small ligand molecules or ions. Measurable amounts of heat were obtained for binding of four phenolic preservative molecules—phenol, meta-cresol, resorcinol, and methylparaben—to both two-zinc and zinc-free insulin and for binding of zinc ions to zinc-free insulin. All of the reactions were spontaneous, but the phenolic binding was driven by enthalpy, while that of zinc was entropy-driven. A combination of van der Waals interactions, hydrophobic effects, and protein conformational changes appeared to be involved in binding of the phenolic ligands. Zinc ions displayed two types of binding to insulin, both involving ion–dipole interactions.

Tài liệu tham khảo

S. C. Harvey. In A. Osol (ed.), Remington's Pharmaceutical Sciences, Mack, Easton, Pennsylvania, 1980, pp. 914–919. M. J. Pikal. Results of Evaluation of the LKB 2277 Calorimeter for Stability Testing of Pharmaceuticals, LKB Application Note 335, LKB Produkter AB, Bromma, Sweden, 1983. R. A. G. de Graaff, A. Lewit-Bentley, and S. P. Tolley. In G. Dodson, J. P. Glusker, and D. Sayer (eds.), Structural Studies on Molecules of Biological Interest. A Volume in Honour of Dorothy Hodgkin, Clarendon Press, Oxford, 1981, pp. 547–556. R. Palmieri, R. W.-K. Lee, and M. F. Dunn. Biochemistry 27:3387–3397 (1988). U. Derewenda, Z. Derewenda, E. J. Dodson, G. G. Dodson, C. D. Reynolds, G. D. Smith, C. Sparks, and D. Swenson. Nature 338:594–596 (1989). D. T. Manallack, P. R. Andrews, and E. F. Woods. J. Med. Chem. 28:1522–1526 (1985). S. O. Emdin, G. G. Dodson, J. M. Cutfield, and S. M. Cutfield. Diabetologia 19:174–182 (1980). M. F. Dunn, S. E. Pattison, M. C. Storm, and E. Quiel. Biochemistry 19:718–725 (1980). M. C. Storm and M. F. Dunn. Biochemistry 24:1749–1756 (1985). N. C. Kaarsholm and M. F. Dunn. Biochemistry 26:883–890 (1987). G. E. Hardee, M. Otagiri, and J. H. Perrin. Acta Pharm. Suec. 15:188–199 (1978). C. Bjurulf, J. Laynex, and E. Wadso. Eur. J. Biochem. 14:47–52 (1970). D. W. Bolen, M. Flogel, and R. Biltonen. Biochemistry 10:4136–4140 (1971). C. Bjurulf and I. Wadso. Eur. J. Biochem. 31:95–102 (1972). J. M. Summerell, A. Osmand, and G. H. Smith. Biochem. J. 95:31P (1965). P. T. Grant, T. L. Coombs, and B. H. Frank. Biochem. J. 126:433–440 (1972). J. Goldman and F. H. Carpenter. Biochemistry 13:4566–4574 (1974). T. L. Blundell, G. Dodson, D. Hodgkin, and D. Mercola. Adv. Protein Chem. 26:279–402 (1972). D. W. Bolen and S. Rajender. Arch. Biochem. Biophys. 161:435–440 (1974). M. Epstein, Y. Kuriki, R. Biltonen, and E. Racker. Biochemistry 19:5564–5568 (1980). Y. Kuriki and R. L. Biltonen. Biochem. Int. 3:639–644 (1981). W. C. Cromwell, K. Bystrom, and M. R. Eftink. J. Phys. Chem. 89:326–332 (1985). W. E. Klopfenstein. Biochim. Biophys. Acta 187:272–274 (1969). H. P. Hopkins and R. H. Gayden. J. Solut. Chem. 18:743–758 (1989). R. W. Henkens, G. D. Watt, and J. M. Sturtevant. Biochemistry 8:1874–1879 (1969). P. D. Jeffrey. Biochemistry 13:4441–4447 (1974). A. H. Pekar and B. H. Frank. Biochemistry 11:4013–4016 (1972).