<i>S</i> 0↔<i>S</i>1 transition of <i>trans</i>-β-methyl styrene: Vibronic structure and dynamics

Journal of Chemical Physics - Tập 103 Số 1 - Trang 37-47 - 1995
Yehuda Haas1, Shai Kendler1, E. Zingher1, Hanna Zuckermann1, Shmuel Zilberg1
1Department of Physical Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University of Jerusalem, Jerusalem, Israel 91904

Tóm tắt

The fluorescence excitation and emission spectra of trans-β-methyl styrene have been measured in a supersonic jet. A complete vibrational assignment of the S0 and S1 states’ frequencies is reported, assisted by ab initio quantum chemical calculations and by comparison with the IR spectrum. The fluorescence lifetime, τf, of the isolated molecule changes monotonously from 24.5 to 15 ns as the excitation energy increases from the origin band to an excess of 3000 cm−1. The fluorescence quantum yield from the zero-point energy level of S1 is about 38%, similar to the liquid solution value; The major radiationless process being intersystem crossing to a triplet level. The increasing congestion of the emission spectra as the excitation energy is increased is interpreted as due to intramolecular vibrational energy redistribution. The data are consistent with the fact that in the isolated molecule intramolecular vibrational energy redistribution is faster than intersystem crossing. Beyond an excess energy of about 3200 cm−1, a more pronounced decrease in τf is observed, indicating that the barrier to trans–cis isomerization on the S1 surface, in the isolated molecule is higher than 3200 cm−1.

Từ khóa


Tài liệu tham khảo

1978, J. Mol. Spectrosc., 73, 234, 10.1016/0022-2852(78)90217-5

1978, J. Mol. Spectrosc., 73, 240, 10.1016/0022-2852(78)90218-7

1981, J. Mol. Spectrosc., 89, 232, 10.1016/0022-2852(81)90172-7

1971, J. Mol. Spectrosc., 35, 413

1991, J. Am. Chem. Soc., 113, 3498, 10.1021/ja00009a041

1992, Photochem. Photobio. A: Chem., 66, 43, 10.1016/1010-6030(92)85117-D

1992, Photochem. Photobio. A: Chem., 67, 205

1993, J. Am. Chem. Soc., 115, 6468, 10.1021/ja00067a095

1993, J. Photochem. Photobio. A: Chem., 71, 237, 10.1016/1010-6030(93)85005-S

1993, J. Am. Chem. Soc., 115, 7523, 10.1021/ja00069a070

1994, Chem. Phys. Lett., 224, 398

1994, J. Chem. Phys., 101, 11082, 10.1063/1.467796

1995, J. Chem. Phys., 103, 20, 10.1063/1.469633

1995, J. Phys. Chem., 99, 4386, 10.1021/j100013a006

1992, J. Chem. Phys., 96, 135, 10.1021/j100180a030

1972, J. Chem. Phys., 56, 2257, 10.1063/1.1677527

1978, J. Am. Chem. Soc., 100, 392, 10.1021/ja00470a007

1985, J. Chem. Phys., 82, 5379, 10.1063/1.448622

1985, J. Am. Chem. Soc., 107, 836, 10.1021/ja00290a018

1983, Chem. Phys. Lett., 103, 15, 10.1016/0009-2614(83)87065-1

1975, Chem. Phys. Lett., 32, 541, 10.1016/0009-2614(75)85236-5

1976, J. Chem. Phys., 66, 386

1981, J. Chem. Phys., 75, 5672, 10.1063/1.442004

1983, Adv. Laser Spectrosc., 2, 135

1981, J. Chem. Phys., 75, 4758, 10.1063/1.441911

1988, J. Phys. Chem., 92, 5371, 10.1021/j100330a011