Mass Spectrometric Observations of Enhanced Rates of Association Reactions: nLiF = Li n F n (n = 2, 3) at LiF Single Crystal Surfaces

Journal of Materials Synthesis and Processing - Tập 7 - Trang 113-118 - 1999
M. F. Butman1, L. S. Kudin1, A. A. Smirnov1, Z. A. Munir2
1Department of Physics, State University of Chemistry and Technology, Ivanovo, Russian Federation
2Department of Chemical Engineering and Materials Science, University of California, Davis

Tóm tắt

A mass spectrometric method was used to study the kinetics of lithium fluoride single-crystal sublimation. In electron impact ionization mass spectra, Li+, LiF+, Li2F+, and Li3 F 2 + ions originating from monomer (LiF), dimer (Li2F2), and trimer (Li3F3) molecular precursors were detected in the temperature range 970–1070 K. The dimer-to-monomer and trimer-to-monomer flux ratios were found to increase progressively with increasing temperature and also in comparison with those measured under equilibrium of crystalline LiF with its saturated vapor. The temperature dependence of the ion current ratio I(Li2F+)/I(Li+) measured over the interval 916–1087 K was shown to pass reproducibly through a minimum at about 975 K. The enhancement of the rate of association reactions at LiF crystal surfaces is discussed in light of the terrace-ledge-kink model of vaporization and surface charge concept.

Tài liệu tham khảo

W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. R. Soc. London A243, 299 (1951). D. W. Short, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 57, 1381 (1972). J. E. McVicker, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 63, 2645 (1975). Z. A. Munir and J. P. Hirth, J. Electron. Mater. 6, 409 (1977). I. V. Samarasekera and Z. A. Munir, High Temp. Sci. 10, 155 (1978). R. H. Wagoner and J. P. Hirth, J. Chem. Phys. 67, 3074 (1977). S. T. Lam and Z. A. Munir, J. Cryst. Growth 47, 373 (1979); J. Cryst. Growth 51, 227 (1981). L. S. Seacrist and Z. A. Munir, High Temp. Sci. 3, 340 (1971). R. B. Leonard and A. W. Searcy, J. Appl. Phys. 42, 4047 (1971). G. A. Somorjai and J. E. Lester, J. Chem. Phys. 43, 1450 (1965). J. E. Lester and G. A. Somorjai, J. Chem. Phys. 49, 2940 (1968). Z. A. Munir and T. T. Nguyen, Phil. Mag. A 47, 105 (1983). Z. A. Munir, Res Mechanica 11, 1 (1984). Z. A. Munir and A. A. Yeh, Phil. Mag. A 56, 63 (1987). M. F. Butman, A. A. Smirnov, and L. S. Kudin, Appl. Surf. Sci. 126, 185 (1998). V. P. Glushko, Termodinamicheskie Svoistva Individual'nykh Veshchestv [Thermodynamic Properties of Individual Substances], Vol. 4 (Nauka, Moscow, 1984). J. Berkowitz, H. A. Tasman, and W. A. Chupka, J. Chem. Phys. 36, 2170 (1962). L. N. Sidorov and A. S. Alikhanyan, Zhur. Fiz. Khim. 45, 506 (1971). A. S. Alikhanyan, V. B. Sholtz, and L. N. Sidorov, Vestnik, Moskov. Univ. 6, 639 (1972). L. N. Gorokhov, Doctor of Chemistry Thesis (Moscow University, Moscow 1972). P. Mohazzabi and A. W. Searcy, Int. J. Mass Spectrom. Ion Phys. 24, 469 (1977). R. T. Grimley, J. A. Forsman, and Q. G. Grindstaff, J. Phys. Chem. 82, 632 (1978). G. M. Rothberg, M. Eisenstadt, and P. Kusch, J. Chem. Phys. 30, 517 (1959). Z. A. Munir, J. Mater. Sci. 22, 2221 (1987). J. Berkowitz and W. A. Chupka, J. Chem. Phys. 20, 653 (1958). R. F. Porter and R. C. Scoonmaker, J. Chem. Phys. 29, 1070 (1958). H. Dabringhaus and H. J. Meyer, J. Crystal Growth 40, 139 (1977). H. Dabringhaus and H. J. Meyer, J. Crystal Growth 61, 91 (1983). H. Dabringhaus and H. J. Meyer, J. Crystal Growth 61, 95 (1983). R. Helmrich and H. Dabringhaus, J. Crystal Growth 169, 279 (1996).