Monge–Kantorovich Norms on Spaces of Vector Measures

Results in Mathematics - Tập 70 - Trang 349-371 - 2016
Ion Chiţescu1, Loredana Ioana1, Radu Miculescu1, Lucian Niţă2
1Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania
2Technical University of Civil Engineering, Bucharest, Romania

Tóm tắt

One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.

Tài liệu tham khảo

Appel, P.: Mémoire sur les déblais et les remblais des systèmes continus ou discontinus. Mémoirs présentées par divers Savants à l’Académie des Sciences de l’Institut de France, Paris 29, 1–208 (1887) Baron K., Lasota A.: Markov operators on the space of vector measures; coloured fractals. Ann. Polon. Math. 69, 217–234 (1998) Bartle R.G.: A general bilinear vector integral. Studia Math. 15, 337–352 (1956) Billingsley P.: Convergence of Probability Measures. Wiley, New York (1999) Chiţescu, I.: Function Spaces, Ed. Şt. Encicl. Bucureşti (1983, in Romanian) Chiţescu I., Miculescu R., Niţă L.S., Ioana L.: Sesquilinear uniform vector integral. Proc. Indian Acad. Sci. (Math. Sci.) 125, 187–198 (2015) Diestel, J., Uhl, Jr., J.J.: Vector Measures, Math. Surveys, vol. 15. Amer. Math. Soc., Providence (1977) Dinculeanu N.: Vector Measures. VEB Deutscher Verlag der Wissenschafthen, Berlin (1966) Dudley R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002) Dugundji J.: Topology. Allyn and Bacon, Boston (1968) Dunford N., Schwartz J.T.: Linear Operators, Part I: General Theory. Interscience Publishers, New York (1957) Folland G.B.: Real Analysis. Modern Techniques and Their Applications. Wiley, New York (1999) Hanin L.G.: Kantorovich–Rubinstein norm and its application in the theory of Lipschitz spaces. Proc. Am. Math. Soc. 115, 345–352 (1992) Hanin, L.G.: An extension of the Kantorovich norm. In: Monge–Ampère Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997), Contemp. Math., vol. 226, pp. 113–130. Amer. Math. Soc., Providence (1999) Kantorovich L.V.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS 37, 199–201 (1942) Kantorovich L.V., Akilov G.P.: Functional Analysis. Pergamon Press, New York (1982) Kantorovich, L.V., Rubinstein, G.S.: On a certain function space and some extremal problems. C. R. (Doklady) Acad. Sci. URSS 115, 1058–1061 (1957, in Russian) Kantorovich, L.V., Rubinstein, G.S.: On a space of completely additive functions. Vestnik Leningrad Univ. 13, 52–59 (1958, in Russian) Kelley J.L.: General Topology. D. Van Nostrand Company, Toronto (1955) Lukeš J., Maly J.: Measure and Integral. Matfyzpress, Publishing House of the Faculty of Mathematics and Physics. Charles University, Prague (1995) Monge, G.: Mémoire sur la théorie des déblais et des remblais. In: Histoire de l’Académie Royale des Sciences de Paris, pp. 666–704 (1781) Parthasarathy K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967) Poppe H.: Compactness in General Function Spaces. VEB Deutscher Verlag der Wissenschaften, Berlin (1974) Schaefer H.H.: Topological Vector Spaces. Springer, New York (1971) (third printing corrected) Siwek P.: Continuous linear functionals on the space of Borel vector measures. Ann. Polon. Math. 93, 199–209 (2008) Şuhubi E.S.: Functional Analysis. Kluwer Academic Publishers, Dordrecht (2003)