Patch cloning method for multiple site-directed and saturation mutagenesis

Springer Science and Business Media LLC - Tập 13 - Trang 1-8 - 2013
Naohiro Taniguchi1, Sayumi Nakayama1, Takashi Kawakami1, Hiroshi Murakami1
1Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

Tóm tắt

Various DNA manipulation methods have been developed to prepare mutant genes for protein engineering. However, development of more efficient and convenient method is still demanded. Homologous DNA assembly methods, which do not depend on restriction enzymes, have been used as convenient tools for cloning and have been applied to site-directed mutagenesis recently. This study describes an optimized homologous DNA assembly method, termed as multiple patch cloning (MUPAC), for multiple site-directed and saturation mutagenesis. To demonstrate MUPAC, we introduced five back mutations to a mutant green fluorescent protein (GFPuv) with five deleterious mutations at specific sites and transformed Escherichia coli (E. coli) with the plasmids obtained. We observed that the over 90% of resulting colonies possessed the plasmids containing the reverted GFPuv gene and exhibited fluorescence. We extended the test to introduce up to nine mutations in Moloney Murine Leukemia Virus reverse transcriptase (M-MLV RT) by assembling 11 DNA fragments using MUPAC. Analysis of the cloned plasmid by electrophoresis and DNA sequencing revealed that approximately 30% of colonies had the objective mutant M-MLV RT gene. Furthermore, we also utilized this method to prepare a library of mutant GFPuv genes containing saturation mutations at five specific sites, and we found that MUPAC successfully introduced NNK codons at all five sites, whereas other site remained intact. MUPAC could efficiently introduce various mutations at multiple specific sites within a gene. Furthermore, it could facilitate the preparation of experimental gene materials important to molecular and synthetic biology research.

Tài liệu tham khảo

Sen S, Dasu VV, Mandal B: Developments in directed evolution for improving enzyme functions. Appl Biochem Biotechnol. 2007, 143 (3): 212-223. 10.1007/s12010-007-8003-4. Labrou NE: Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci. 2010, 11 (1): 91-100. 10.2174/138920310790274617. Brustad EM, Arnold FH: Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol. 2011, 15 (2): 201-210. 10.1016/j.cbpa.2010.11.020. Reetz MT: Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem. 2011, 50 (1): 138-174. 10.1002/anie.201000826. Evnin LB, Vasquez JR, Craik CS: Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci U S A. 1990, 87 (17): 6659-6663. 10.1073/pnas.87.17.6659. Wang L, Brock A, Herberich B, Schultz PG: Expanding the genetic code of Escherichia coli. Science. 2001, 292 (5516): 498-500. 10.1126/science.1060077. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A: Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem. 2005, 44 (27): 4192-4196. 10.1002/anie.200500767. Geddie ML, Matsumura I: Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop. J Biol Chem. 2004, 279 (25): 26462-26468. 10.1074/jbc.M401447200. Woodyer R, van der Donk WA, Zhao HM: Optimizing a biocatalyst for improved NAD(P)H regeneration: Directed evolution of phosphite dehydrogenase. Comb Chem High Throughput Screen. 2006, 9 (4): 237-245. 10.2174/138620706776843246. Shim JH, Chen HM, Rich JR, Goddard-Borger ED, Withers SG: Directed evolution of a beta-glycosidase from Agrobacterium sp. to enhance its glycosynthase activity toward C3-modified donor sugars. Protein Eng Des Sel. 2012, 25 (9): 465-472. 10.1093/protein/gzs045. Strafford J, Payongsri P, Hibbert EG, Morris P, Batth SS, Steadman D, Smith ME, Ward JM, Hailes HC, Dalby PA: Directed evolution to re-adapt a co-evolved network within an enzyme. J Biotechnol. 2012, 157 (1): 237-245. 10.1016/j.jbiotec.2011.11.017. Dunn IS, Cowan R, Jennings PA: Improved peptide function from random mutagenesis over short 'windows’. Protein Eng. 1988, 2 (4): 283-291. 10.1093/protein/2.4.283. Reetz MT, Carballeira JD, Vogel A: Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem. 2006, 45 (46): 7745-7751. 10.1002/anie.200602795. Hogrefe HH, Cline J, Youngblood GL, Allen RM: Creating randomized amino acid libraries with the QuikChange (R) Multi Site-Directed Mutagenesis Kit. Biotechniques. 2002, 33 (5): 1158- Dennig A, Shivange AV, Marienhagen J, Schwaneberg U: OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS ONE. 2011, 6 (10):  - Aslanidis C, de Jong PJ: Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 1990, 18 (20): 6069-6074. 10.1093/nar/18.20.6069. K-c H: Exonuclease III induced ligase-free directional subcloning of PCR products. Nucleic Acids Res. 1993, 21 (23): 5528-10.1093/nar/21.23.5528. Tillett D, Neilan BA: Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res. 1999, 27 (19): e26-e28. 10.1093/nar/27.19.e26. Li MZ, Elledge SJ: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods. 2007, 4 (3): 251-256. 10.1038/nmeth1010. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009, 6 (5): 343-U341. 10.1038/nmeth.1318. Zhang Y, Werling U, Edelmann W: SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 2012, 40 (8): e55-e55. 10.1093/nar/gkr1288. Mitchell LA, Cai Y, Taylor MS, Noronha AM, Chuang J, Dai L, Boeke JD: Multichange Isothermal Mutagenesis: a new strategy for multiple site-directed mutagenesis in plasmid DNA. ACS Synth Biol. 2013, 2 (8): 473-477. 10.1021/sb300131w. Crameri A, Whitehorn EA, Tate E, Stemmer WPC: Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996, 14 (3): 315-319. 10.1038/nbt0396-315. Kotewicz ML, D’Alessio JM, Driftmier KM, Blodgett KP, Gerard GF: Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985, 35 (3): 249-258. 10.1016/0378-1119(85)90003-4. Arezi B, Hogrefe H: Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. 2009, 37 (2): 473-481.