Hybrid Graphene Ribbon/Carbon Electrodes for High‐Performance Energy Storage

Advanced Energy Materials - Tập 8 Số 35 - 2018
Anna K. Farquhar1, Mustafa Supur1, Scott R. Smith1, Colin Van Dyck2, Richard L. McCreery1,2
1Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
2Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9 Canada

Tóm tắt

AbstractThe utility of supercapacitors for both fixed and portable energy storage would be greatly enhanced if their energy density could be increased while maintaining their high power density, fast charging time, and low cost. This study describes a simple, solution‐phase, scalable modification of carbon materials by a covalently bonded “brush” of hydrogen‐terminated graphene ribbons (GRs) with layer thicknesses of 2–20 nm, resulting in a 20–100 times increase in the areal capacitance of the unmodified electrode surface. On a flat sp2 carbon surface modified by GRs, the capacitance exceeds 1200 µF cm−2 in 0.1 m H2SO4 due to a distinct type of pseudocapacitance during constant current charge/discharge cycling. Modification of high surface area carbon black electrodes with GRs yields capacitances of 950–1890 F g−1, power densities >40 W g−1, and minimal change in capacitance during 1500 charge/discharge cycles at 20 A g−1. A capacitance of 1890 F g−1 affords an energy density of 318 Wh kg−1 operating at 1.1 V and 590 Wh kg−1 at 1.5 V. The projected energy density of a hybrid GR/carbon supercapacitor greatly exceeds the current 10 Wh kg−1 for commercial supercapacitors and approaches that of lithium ion batteries.

Từ khóa


Tài liệu tham khảo

10.1039/C1CS15060J

10.1039/C3MH00112A

10.1126/science.1200770

10.1021/ar200306b

10.1126/science.1216744

10.1039/C8NJ00652K

10.1021/jp902214f

10.1088/1361-6528/aa596d

10.1016/j.nanoen.2014.06.028

10.1039/C7TA05646J

10.1002/chem.201705555

10.1021/nn400731g

10.1002/adma.201705489

10.1016/j.jpowsour.2010.06.036

10.1039/C7TA03655H

10.1002/aenm.201800064

10.1016/j.jpowsour.2018.06.004

10.1016/j.jpowsour.2010.09.097

10.1021/am301284n

10.1016/j.elecom.2015.12.014

10.1002/anie.201601395

10.1002/ange.201601395

10.1021/acsami.7b19305

10.1021/ja00150a024

10.1021/la049616i

10.1021/ac0007534

10.1039/c0cs00149j

10.1021/ac034026v

10.1039/b601163m

10.1021/la063532n

10.1021/jacs.7b02563

10.1039/C2CP43516K

10.1021/jacs.6b07499

10.1073/pnas.1221643110

10.1021/jp4044013

10.1016/j.jpowsour.2012.11.122

10.1039/c1cp20980a

10.1039/b820170f

10.1002/adma.200701498

10.1103/PhysRevB.65.165401

10.1038/nnano.2009.177

10.1103/PhysRevLett.72.1878

10.1103/PhysRevMaterials.2.014006

10.1021/cr500023c

10.1021/nn200025p

10.1021/acs.jpcc.5b12565

10.1021/la701655w

10.1021/acs.jpcc.5b11279

10.1021/ac052244d

10.1366/000370207782597094

10.1002/cber.19911240935

10.1103/PhysRevB.81.245428

10.1021/nl801827v

10.1021/cr068076m

10.1021/cm00011a018

10.1021/acs.analchem.7b00362

10.1038/nature09211

10.1021/jacs.6b03014

10.1126/science.1213003

10.1038/nmat3601

10.1126/science.1249625

10.1149/1.1393188

10.1366/0003702011952460