Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3)

Springer Science and Business Media LLC - Tập 5 - Trang 1-8 - 2008
Satish K Pillai1,2, Joseph K Wong1,2, Jason D Barbour1
1Department of Medicine, University of California, San Francisco, USA
2Veterans Affairs Medical Center, San Francisco, USA

Tóm tắt

APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.

Tài liệu tham khảo

Mansky LM, Temin HM: Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology. 1995, 69: 5087-5094. Levy DN, Aldrovandi GM, Kutsch O, Shaw GM: Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A. 2004, 101 (12): 4204-4209. 10.1073/pnas.0306764101. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD: HIV-1 dynamics in vivo: virion clearance rate, infected cell lifetime, and viral generation time. Science. 1996, 271: 1582-1586. 10.1126/science.271.5255.1582. Bourinbaiar AS: The ratio of defective HIV-1 particles to replication-competent infectious virions. Acta Virol. 1994, 38 (1): 59-61. Li Y, Hui H, Burgess CJ, Price RW, Sharp PM, Hahn BH, Shaw GM: Complete nucleotide sequence, genome organization, and biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. Journal of Virology. 1992, 66: 6587-6600. Sanchez G, Xu X, Chermann JC, Hirsch I: Accumulation of defective viral genomes in peripheral blood mononuclear cells fo HIV infected individuals. Journal of Virology. 1997, 71: 2233-2240. Eigen M: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971, 58 (10): 465-523. 10.1007/BF00623322. Eigen M: Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A. 2002, 99 (21): 13374-13376. 10.1073/pnas.212514799. Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI: Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci U S A. 1999, 96 (4): 1492-1497. 10.1073/pnas.96.4.1492. Smith RA, Loeb LA, Preston BD: Lethal mutagenesis of HIV. Virus Res. 2005, 107 (2): 215-228. 10.1016/j.virusres.2004.11.011. Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 2000, 6 (12): 1375-1379. 10.1038/82191. Lau JY, Tam RC, Liang TJ, Hong Z: Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology. 2002, 35 (5): 1002-1009. 10.1053/jhep.2002.32672. Lecossier D, Bouchonnet F, Clavel F, Hance AJ: Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003, 300 (5622): 1112-10.1126/science.1083338. Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM: Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004, 78 (11): 6073-6076. 10.1128/JVI.78.11.6073-6076.2004. Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002, 418 (6898): 646-650. 10.1038/nature00939. Sheehy AM, Gaddis NC, Malim MH: The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 2003, 9 (11): 1404-1407. 10.1038/nm945. Stopak K, de Noronha C, Yonemoto W, Greene WC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 2003, 12 (3): 591-601. 10.1016/S1097-2765(03)00353-8. Mezei M, Minarovits J: Reversal of HIV drug resistance and novel strategies to curb HIV infection: the viral infectivity factor Vif as a target and tool of therapy. Curr Drug Targets. 2006, 7 (7): 881-885. 10.2174/138945006777709610. Carr JM, Davis AJ, Feng F, Burrell CJ, Li P: Cellular interactions of virion infectivity factor (Vif) as potential therapeutic targets: APOBEC3G and more?. Curr Drug Targets. 2006, 7 (12): 1583-1593. 10.2174/138945006779025356. Stopak K, Greene WC: Protecting APOBEC3G: a potential new target for HIV drug discovery. Curr Opin Investig Drugs. 2005, 6 (2): 141-147. Fessel J: A new approach to an AIDS vaccine: creating antibodies to HIV vif will enable apobec3G to turn HIV-infection into a benign problem. Med Hypotheses. 2005, 64 (2): 261-263. 10.1016/j.mehy.2004.07.015. Hirsch MS: HIV drug resistance--a chink in the armor. N Engl J Med. 2002, 347 (6): 438-439. 10.1056/NEJMe020072. Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP: APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res. 2004, 32 (8): 2421-2429. 10.1093/nar/gkh554. Suspene R, Rusniok C, Vartanian JP, Wain-Hobson S: Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res. 2006, 34 (17): 4677-4684. 10.1093/nar/gkl555. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR: Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004, 11 (5): 435-442. 10.1038/nsmb758. Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK: Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology. 2007, 360 (2): 247-256. 10.1016/j.virol.2006.10.036. Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K: Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology. 2007, 4: 48-10.1186/1742-4690-4-48. Chen KM, Martemyanova N, Lu Y, Shindo K, Matsuo H, Harris RS: Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Lett. 2007, 581 (24): 4761-4766. 10.1016/j.febslet.2007.08.076. Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R, Iwatani Y, Levin JG, Strebel K: Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol. 2006, 80 (10): 4673-4682. 10.1128/JVI.80.10.4673-4682.2006. Mansky LM, Pearl DK, Gajary LC: Combination of drugs and drug-resistant reverse transcriptase results in a multiplicative increase of human immunodeficiency virus type 1 mutant frequencies. J Virol. 2002, 76 (18): 9253-9259. 10.1128/JVI.76.18.9253-9259.2002. Summers J, Litwin S: Examining the theory of error catastrophe. J Virol. 2006, 80 (1): 20-26. 10.1128/JVI.80.1.20-26.2006. Bull JJ, Sanjuan R, Wilke CO: Theory of lethal mutagenesis for viruses. J Virol. 2007, 81 (6): 2930-2939. 10.1128/JVI.01624-06. Berkhout B, de Ronde A: APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutations. Aids. 2004, 18 (13): 1861-1863. 10.1097/00002030-200409030-00022. Liddament MT, Brown WL, Schumacher AJ, Harris RS: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 2004, 14 (15): 1385-1391. 10.1016/j.cub.2004.06.050. Johnson VA, Brun-Vezinet F, Clotet B, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD: Update of the drug resistance mutations in HIV-1: Fall 2006. Top HIV Med. 2006, 14 (3): 125-130. Carvajal-Rodriguez A, Crandall KA, Posada D: Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol. 2007, 7 (4): 476-483. 10.1016/j.meegid.2007.02.001. Moutouh L, Corbeil J, Richman DD: Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci USA. 1996, 93: 6106-6111. 10.1073/pnas.93.12.6106. Kellam P, Larder BA: Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. Journal of Virology. 1995, 69: 669-674. Yuste E, Sanchez-Palomino S, Casado C, Domingo E, Lopez-Galindez C: Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol. 1999, 73 (4): 2745-2751. Los Alamos National Lab HIV Sequence Database. [http://www.hiv.lanl.gov] Pace C, Keller J, Nolan D, James I, Gaudieri S, Moore C, Mallal S: Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol. 2006, 80 (18): 9259-9269. 10.1128/JVI.00888-06. Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD: Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog. 2005, 1 (1): e6-10.1371/journal.ppat.0010006. Cho SJ, Drechsler H, Burke RC, Arens MQ, Powderly W, Davidson NO: APOBEC3F and APOBEC3G mRNA levels do not correlate with human immunodeficiency virus type 1 plasma viremia or CD4+ T-cell count. J Virol. 2006, 80 (4): 2069-2072. 10.1128/JVI.80.4.2069-2072.2006. Jin X, Wu H, Smith H: APOBEC3G levels predict rates of progression to AIDS. Retrovirology. 2007, 4: 20-10.1186/1742-4690-4-20. An P, Bleiber G, Duggal P, Nelson G, May M, Mangeat B, Alobwede I, Trono D, Vlahov D, Donfield S, Goedert JJ, Phair J, Buchbinder S, O'Brien SJ, Telenti A, Winkler CA: APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol. 2004, 78 (20): 11070-11076. 10.1128/JVI.78.20.11070-11076.2004. Desrosiers RC: Prospects for an AIDS vaccine. Nat Med. 2004, 10 (3): 221-223. 10.1038/nm0304-221. Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature. 2005, 435 (7038): 108-114. 10.1038/nature03493. Bishop KN, Holmes RK, Malim MH: Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination. J Virol. 2006, 80 (17): 8450-8458. 10.1128/JVI.00839-06. Soros VB, Yonemoto W, Greene WC: Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H. PLoS Pathog. 2007, 3 (2): e15-10.1371/journal.ppat.0030015. Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K: Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol. 2007, 81 (24): 13346-13353. 10.1128/JVI.01361-07. Stanford HIV Drug Resistance Database . [http://hivdb.stanford.edu/]