Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3)
Tóm tắt
APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.
Tài liệu tham khảo
Mansky LM, Temin HM: Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology. 1995, 69: 5087-5094.
Levy DN, Aldrovandi GM, Kutsch O, Shaw GM: Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A. 2004, 101 (12): 4204-4209. 10.1073/pnas.0306764101.
Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD: HIV-1 dynamics in vivo: virion clearance rate, infected cell lifetime, and viral generation time. Science. 1996, 271: 1582-1586. 10.1126/science.271.5255.1582.
Bourinbaiar AS: The ratio of defective HIV-1 particles to replication-competent infectious virions. Acta Virol. 1994, 38 (1): 59-61.
Li Y, Hui H, Burgess CJ, Price RW, Sharp PM, Hahn BH, Shaw GM: Complete nucleotide sequence, genome organization, and biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. Journal of Virology. 1992, 66: 6587-6600.
Sanchez G, Xu X, Chermann JC, Hirsch I: Accumulation of defective viral genomes in peripheral blood mononuclear cells fo HIV infected individuals. Journal of Virology. 1997, 71: 2233-2240.
Eigen M: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971, 58 (10): 465-523. 10.1007/BF00623322.
Eigen M: Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A. 2002, 99 (21): 13374-13376. 10.1073/pnas.212514799.
Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI: Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci U S A. 1999, 96 (4): 1492-1497. 10.1073/pnas.96.4.1492.
Smith RA, Loeb LA, Preston BD: Lethal mutagenesis of HIV. Virus Res. 2005, 107 (2): 215-228. 10.1016/j.virusres.2004.11.011.
Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 2000, 6 (12): 1375-1379. 10.1038/82191.
Lau JY, Tam RC, Liang TJ, Hong Z: Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology. 2002, 35 (5): 1002-1009. 10.1053/jhep.2002.32672.
Lecossier D, Bouchonnet F, Clavel F, Hance AJ: Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003, 300 (5622): 1112-10.1126/science.1083338.
Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM: Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004, 78 (11): 6073-6076. 10.1128/JVI.78.11.6073-6076.2004.
Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002, 418 (6898): 646-650. 10.1038/nature00939.
Sheehy AM, Gaddis NC, Malim MH: The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 2003, 9 (11): 1404-1407. 10.1038/nm945.
Stopak K, de Noronha C, Yonemoto W, Greene WC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 2003, 12 (3): 591-601. 10.1016/S1097-2765(03)00353-8.
Mezei M, Minarovits J: Reversal of HIV drug resistance and novel strategies to curb HIV infection: the viral infectivity factor Vif as a target and tool of therapy. Curr Drug Targets. 2006, 7 (7): 881-885. 10.2174/138945006777709610.
Carr JM, Davis AJ, Feng F, Burrell CJ, Li P: Cellular interactions of virion infectivity factor (Vif) as potential therapeutic targets: APOBEC3G and more?. Curr Drug Targets. 2006, 7 (12): 1583-1593. 10.2174/138945006779025356.
Stopak K, Greene WC: Protecting APOBEC3G: a potential new target for HIV drug discovery. Curr Opin Investig Drugs. 2005, 6 (2): 141-147.
Fessel J: A new approach to an AIDS vaccine: creating antibodies to HIV vif will enable apobec3G to turn HIV-infection into a benign problem. Med Hypotheses. 2005, 64 (2): 261-263. 10.1016/j.mehy.2004.07.015.
Hirsch MS: HIV drug resistance--a chink in the armor. N Engl J Med. 2002, 347 (6): 438-439. 10.1056/NEJMe020072.
Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP: APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res. 2004, 32 (8): 2421-2429. 10.1093/nar/gkh554.
Suspene R, Rusniok C, Vartanian JP, Wain-Hobson S: Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res. 2006, 34 (17): 4677-4684. 10.1093/nar/gkl555.
Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR: Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004, 11 (5): 435-442. 10.1038/nsmb758.
Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK: Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology. 2007, 360 (2): 247-256. 10.1016/j.virol.2006.10.036.
Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K: Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology. 2007, 4: 48-10.1186/1742-4690-4-48.
Chen KM, Martemyanova N, Lu Y, Shindo K, Matsuo H, Harris RS: Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Lett. 2007, 581 (24): 4761-4766. 10.1016/j.febslet.2007.08.076.
Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R, Iwatani Y, Levin JG, Strebel K: Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol. 2006, 80 (10): 4673-4682. 10.1128/JVI.80.10.4673-4682.2006.
Mansky LM, Pearl DK, Gajary LC: Combination of drugs and drug-resistant reverse transcriptase results in a multiplicative increase of human immunodeficiency virus type 1 mutant frequencies. J Virol. 2002, 76 (18): 9253-9259. 10.1128/JVI.76.18.9253-9259.2002.
Summers J, Litwin S: Examining the theory of error catastrophe. J Virol. 2006, 80 (1): 20-26. 10.1128/JVI.80.1.20-26.2006.
Bull JJ, Sanjuan R, Wilke CO: Theory of lethal mutagenesis for viruses. J Virol. 2007, 81 (6): 2930-2939. 10.1128/JVI.01624-06.
Berkhout B, de Ronde A: APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutations. Aids. 2004, 18 (13): 1861-1863. 10.1097/00002030-200409030-00022.
Liddament MT, Brown WL, Schumacher AJ, Harris RS: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 2004, 14 (15): 1385-1391. 10.1016/j.cub.2004.06.050.
Johnson VA, Brun-Vezinet F, Clotet B, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD: Update of the drug resistance mutations in HIV-1: Fall 2006. Top HIV Med. 2006, 14 (3): 125-130.
Carvajal-Rodriguez A, Crandall KA, Posada D: Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol. 2007, 7 (4): 476-483. 10.1016/j.meegid.2007.02.001.
Moutouh L, Corbeil J, Richman DD: Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci USA. 1996, 93: 6106-6111. 10.1073/pnas.93.12.6106.
Kellam P, Larder BA: Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. Journal of Virology. 1995, 69: 669-674.
Yuste E, Sanchez-Palomino S, Casado C, Domingo E, Lopez-Galindez C: Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol. 1999, 73 (4): 2745-2751.
Los Alamos National Lab HIV Sequence Database. [http://www.hiv.lanl.gov]
Pace C, Keller J, Nolan D, James I, Gaudieri S, Moore C, Mallal S: Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol. 2006, 80 (18): 9259-9269. 10.1128/JVI.00888-06.
Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD: Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog. 2005, 1 (1): e6-10.1371/journal.ppat.0010006.
Cho SJ, Drechsler H, Burke RC, Arens MQ, Powderly W, Davidson NO: APOBEC3F and APOBEC3G mRNA levels do not correlate with human immunodeficiency virus type 1 plasma viremia or CD4+ T-cell count. J Virol. 2006, 80 (4): 2069-2072. 10.1128/JVI.80.4.2069-2072.2006.
Jin X, Wu H, Smith H: APOBEC3G levels predict rates of progression to AIDS. Retrovirology. 2007, 4: 20-10.1186/1742-4690-4-20.
An P, Bleiber G, Duggal P, Nelson G, May M, Mangeat B, Alobwede I, Trono D, Vlahov D, Donfield S, Goedert JJ, Phair J, Buchbinder S, O'Brien SJ, Telenti A, Winkler CA: APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol. 2004, 78 (20): 11070-11076. 10.1128/JVI.78.20.11070-11076.2004.
Desrosiers RC: Prospects for an AIDS vaccine. Nat Med. 2004, 10 (3): 221-223. 10.1038/nm0304-221.
Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature. 2005, 435 (7038): 108-114. 10.1038/nature03493.
Bishop KN, Holmes RK, Malim MH: Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination. J Virol. 2006, 80 (17): 8450-8458. 10.1128/JVI.00839-06.
Soros VB, Yonemoto W, Greene WC: Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H. PLoS Pathog. 2007, 3 (2): e15-10.1371/journal.ppat.0030015.
Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K: Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol. 2007, 81 (24): 13346-13353. 10.1128/JVI.01361-07.
Stanford HIV Drug Resistance Database . [http://hivdb.stanford.edu/]