TILLING to detect induced mutations in soybean

Springer Science and Business Media LLC - Tập 8 - Trang 1-10 - 2008
Jennifer L Cooper1, Bradley J Till1,2, Robert G Laport1, Margaret C Darlow1, Justin M Kleffner3, Aziz Jamai4, Tarik El-Mellouki4, Shiming Liu4, Rae Ritchie5, Niels Nielsen5, Kristin D Bilyeu6, Khalid Meksem4, Luca Comai2,7, Steven Henikoff1
1Fred Hutchinson Cancer Research Center, Seattle, USA.
2Department of Biology, University of Washington, Seattle, USA
3National Center for Soybean Biotechnology, Division of Plant Sciences, University of Missouri, Columbia, USA
4Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, USA
5USDA-ARS Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, USA
6USDA-ARS, Plant Genetics Research Unit, Columbia, USA
7Department of Plant Biology and Genome Center, Davis, USA

Tóm tắt

Soybean (Glycine max L. Merr.) is an important nitrogen-fixing crop that provides much of the world's protein and oil. However, the available tools for investigation of soybean gene function are limited. Nevertheless, chemical mutagenesis can be applied to soybean followed by screening for mutations in a target of interest using a strategy known as Targeting Induced Local Lesions IN Genomes (TILLING). We have applied TILLING to four mutagenized soybean populations, three of which were treated with ethyl methanesulfonate (EMS) and one with N-nitroso-N-methylurea (NMU). We screened seven targets in each population and discovered a total of 116 induced mutations. The NMU-treated population and one EMS mutagenized population had similar mutation density (~1/140 kb), while another EMS population had a mutation density of ~1/250 kb. The remaining population had a mutation density of ~1/550 kb. Because of soybean's polyploid history, PCR amplification of multiple targets could impede mutation discovery. Indeed, one set of primers tested in this study amplified more than a single target and produced low quality data. To address this problem, we removed an extraneous target by pretreating genomic DNA with a restriction enzyme. Digestion of the template eliminated amplification of the extraneous target and allowed the identification of four additional mutant alleles compared to untreated template. The development of four independent populations with considerable mutation density, together with an additional method for screening closely related targets, indicates that soybean is a suitable organism for high-throughput mutation discovery even with its extensively duplicated genome.

Tài liệu tham khảo

Krishnan HB: Engineering soybean for enhanced sulfer amino acid content. Crop Science. 2005, 45: 454-461. Ko T-S, Korban SS, Somers DA: Soybean (Glycine max) transformation using immature cotyledon explants. Agrobacterium Protocols. Totowa NJ: Humana Press; 1996, 343: 397-406. 2 Olhoft PM, Donovan CM, Somers DA: Soybean (Glycine max) transformation using mature cotyledonary node explants. Agrobacterium Protocols. 1996, Totowa NJ: Humana Press, 343: 385-396. 2 Somers DA, Samac DA, Olhoft PM: Recent advances in legume transformation. Plant Physiol. 2003, 131 (3): 892-899. Olhoft PM, Flagel LE, Donovan CM, Somers DA: Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 2003, 216 (5): 723-735. Cho HJ, Farrand SK, Noel GR, Widholm JM: High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta. 2000, 210 (2): 195-204. Subramanian S, Graham MY, Yu O, Graham TL: RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 2005, 137 (4): 1345-1353. Aragåo FJL, Sarokin L, Vianna GR, Rech EL: Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean plants at high frequency. Theor Appl Genet. 2000, 101: 1-6. El-Shemy HA, Khalafalla MM, Fujita K, Ishimoto M: Molecular control of gene co-suppression in transgenic soybean via particle bombardment. J Biochem Mol Biol. 2006, 39 (1): 61-67. Hadi MZ, McMullen MD, Finer JJ: Transformation of 12 different different plasmids into soybean via particle bombardment. Plant Cell Reports. 1996, 15 (7): 500-505. Li XP, Gan R, Li PL, Ma YY, Zhang LW, Zhang R, Wang Y, Wang NN: Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol. 2006, 61 (6): 829-844. Nunes AC, Vianna GR, Cuneo F, Amaya-Farfan J, de Capdeville G, Rech EL, Aragao FJ: RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta. 2006, 224 (1): 125-132. Carroll BJ, McNeil DL, Gresshoff PM: Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA. 1985, 82 (12): 4162-4166. Hoffman T, Schmidt JS, Zheng X, Bent AF: Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 1999, 119 (3): 935-950. Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT: Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 1998, 26 (20): 4597-4602. [http://tilling.fhcrc.org:9366/arab/status.html] Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 2004, 40 (1): 143-150. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D: A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol. 2005, 23 (1): 75-81. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, et al: Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 2004, 4: 12- Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, et al: Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics. 2003, 164 (2): 731-740. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, et al: Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol. 2005, 59 (1): 85-97. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L: Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7: 19- Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, Kuhrs A, Cobreros L, Brand M, et al: Target-selected mutant screen by TILLING in Drosophila. Genome Res. 2005, 15 (5): 718-723. Richardson KK, Richardson FC, Crosby RM, Swenberg JA, Skopek TR: DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proc Natl Acad Sci USA. 1987, 84 (2): 344-348. Shioyama Y, Gondo Y, Nakao K, Katsuki M: Different mutation frequencies and spectra among organs by N-methyl-N-nitrosourea in rpsL (strA) transgenic mice. Jpn J Cancer Res. 2000, 91 (5): 482-491. Weil CF, Monde R-A: Getting the point-mutations in maize. The Plant Genome [Crop Science Supplement]. 2007, 1: 60-S. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M: A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 2003, 131 (3): 866-871. Udvardi MK, Tabata S, Parniske M, Stougaard J: Lotus japonicus: legume research in the fast lane. Trends Plant Sci. 2005, 10 (5): 222-228. [http://www.soybeantilling.org] Kerr PS, Sebastian SA: Soybean Products with Improved Carbohydrate Composition and Soybean Plants. vol. 6,147,193. U.S. 2000 Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Steine MN, et al: High-throughput TILLING for functional genomics. Methods Mol Biol. 2003, 236: 205-220. [http://www.proweb.org/input/] Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology. Edited by: S K, S M. Totowa, NJ: Humana Press; 2000, 365-386. McCallum CM, Comai L, Greene EA, Henikoff S: Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 2000, 123 (2): 439-442. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, et al: Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 2003, 13 (3): 524-530. Till BJ, Zerr T, Bowers E, Greene EA, Comai L, Henikoff S: High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res. 2006, 34 (13): e99- Zerr T, Henikoff S: Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 2005, 33 (9): 2806-2812. Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S: Blocks-based methods for detecting protein homology. Electrophoresis. 2000, 21 (9): 1700-1706. International Institute of Tropical Agriculture (IITA). [http://www.iita.org/]