Measuring DNA content in live cells by fluorescence microscopy
Tóm tắt
Live-cell fluorescence microscopy (LCFM) is a powerful tool used to investigate cellular dynamics in real time. However, the capacity to simultaneously measure DNA content in cells being tracked over time remains challenged by dye-associated toxicities. The ability to measure DNA content in single cells by means of LCFM would allow cellular stage and ploidy to be coupled with a variety of imaging directed analyses. Here we describe a widely applicable nontoxic approach for measuring DNA content in live cells by fluorescence microscopy. This method relies on introducing a live-cell membrane-permeant DNA fluorophore, such as Hoechst 33342, into the culture medium of cells at the end of any live-cell imaging experiment and measuring each cell’s integrated nuclear fluorescence to quantify DNA content. Importantly, our method overcomes the toxicity and induction of DNA damage typically caused by live-cell dyes through strategic timing of adding the dye to the cultures; allowing unperturbed cells to be imaged for any interval of time before quantifying their DNA content. We assess the performance of our method empirically and discuss adaptations that can be implemented using this technique. Presented in conjunction with cells expressing a histone 2B-GFP fusion protein (H2B-GFP), we demonstrated how this method enabled chromosomal segregation errors to be tracked in cells as they progressed through cellular division that were later identified as either diploid or polyploid. We also describe and provide an automated Matlab-derived algorithm that measures the integrated nuclear fluorescence in each cell and subsequently plots these measurements into a cell cycle histogram for each frame imaged. The algorithm’s accurate assessment of DNA content was validated by parallel flow cytometric studies. This method allows the examination of single-cell dynamics to be correlated with cellular stage and ploidy in a high-throughput fashion. The approach is suitable for any standard epifluorescence microscope equipped with a stable illumination source and either a stage-top incubator or an enclosed live-cell incubation chamber. Collectively, we anticipate that this method will allow high-resolution microscopic analysis of cellular processes involving cell cycle progression, such as checkpoint activation, DNA replication, and cellular division.
Tài liệu tham khảo
Darzynkiewicz Z. Critical aspects in analysis of cellular DNA content. Curr Protoc Cytom. 2010. https://doi.org/10.1002/0471142956.cy0702s52.
Darzynkiewicz Z, Halicka HD, Zhao H. Analysis of cellular DNA content by flow and laser scanning cytometry. New York: Springer; 2010. p. 137–47. https://doi.org/10.1007/978-1-4419-6199-0_9.
Martin-Reay DG, Kamentsky LA, Weinberg DS, Hollister KA, Cibas ES. Evaluation of a new slide-based laser scanning cytometer for DNA analysis of tumors. Comparison with flow cytometry and image analysis. Am J Clin Pathol. 1994;102:432–8.
Martin RM, Leonhardt H, Cardoso MC. DNA labeling in living cells. Cytom Part A. 2005;67A:45–52. https://doi.org/10.1002/cyto.a.20172.
Schmid I, Ferbas J, Uittenbogaart CH, Giorgi JV. Flow cytometric analysis of live cell proliferation and phenotype in populations with low viability. Cytometry. 1999;35:64–74. http://www.ncbi.nlm.nih.gov/pubmed/10554182.
Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z. Induction of DNA damage response by the supravital probes of nucleic acids. Cytom Part A. 2009;75A:510–9. https://doi.org/10.1002/cyto.a.20727.
Huang X, King MA, Halicka HD, Traganos F, Okafuji M, Darzynkiewicz Z. Histone H2AX phosphorylation induced by selective photolysis of BrdU-labeled DNA with UV light: relation to cell cycle phase. Cytometry. 2004;62A:1–7. https://doi.org/10.1002/cyto.a.20086.
Zheng J, Qi S, Zhu H, Xiao X. Toxicity of Hoechst 33342: implication in side population analysis. Cell Mol Biol (Noisy-le-grand). 2016;62:27–30. http://www.ncbi.nlm.nih.gov/pubmed/27453268.
Durand RE, Olive PL. Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J Histochem Cytochem. 1982;30:111–6. https://doi.org/10.1177/30.2.7061816.
Taylor IW, Milthorpe BK. An evaluation of DNA fluorochromes, staining techniques, and analysis for flow cytometry. I. Unperturbed cell populations. J Histochem Cytochem. 1980;28:1224–32. https://doi.org/10.1177/28.11.6159392.
Gomes CJ, Centuori SM, Harman MW, Putnam CW, Wolgemuth CW, Martinez JD. The induction of endoreduplication and polyploidy by elevated expression of 14–3-3γ. Genes Cancer. 2017;8:771–83. https://doi.org/10.18632/genesandcancer.161.
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–9. https://doi.org/10.1038/25292.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Potapova T, Gorbsky GJ. The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel). 2017. https://doi.org/10.3390/biology6010012.
Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54. https://doi.org/10.1038/nrm1276.
Coward J, Harding A. Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front Oncol. 2014;4:123. https://doi.org/10.3389/fonc.2014.00123.
Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev. 2007;17:157–62. https://doi.org/10.1016/j.gde.2007.02.011.
Ettinger A, Wittmann T. Fluorescence live cell imaging. Methods Cell Biol. 2014;123:77–94. https://doi.org/10.1016/B978-0-12-420138-5.00005-7.
Harman MW, Dunham-Ems SM, Caimano MJ, Belperron AA, Bockenstedt LK, Fu HC, et al. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc Natl Acad Sci USA. 2012;109:3059–64. https://doi.org/10.1073/pnas.1114362109.
Durand RE. Use of Hoechst 33342 for cell selection from multicell systems. J Histochem Cytochem. 1982;30:117–22. https://doi.org/10.1177/30.2.6174559.
Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002. https://doi.org/10.1182/blood.v99.2.507.
Krishan A. Effect of drug efflux blockers on vital staining of cellular DNA with Hoechst 33342. Cytometry. 1987;8:642–5. https://doi.org/10.1002/cyto.990080618.
Hofland MH, Stevenson AP, Wilder ME, Tobey RA. Chapter 9 supravital cell staining with Hoechst 33342 and DiOC5(3). Methods Cell Biol. 1990;33:89–95. https://doi.org/10.1016/s0091-679x(08)60514-2.
Crissman HA, Hofland MH, Stevenson AP, Wilder ME, Tobey RA. Use of DiO-C5-3 to improve Hoechst 33342 uptake, resolution of DNA content, and survival of CHO cells. Exp Cell Res. 1988;174:388–96. https://doi.org/10.1016/0014-4827(88)90309-6.
Tanudji M, Shoemaker J, L’Italien L, Russell L, Chin G, Schebye XM. Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell. 2004;15:3771–81. https://doi.org/10.1091/mbc.E03-07-0482.
Jiang E. Differences in the origins of kinetochore-positive and kinetochore-negative micronuclei: a live cell imaging study. Mutat Res Mol Mech Mutagen. 2016;787:7–14. https://doi.org/10.1016/J.MRFMMM.2016.02.007.
Kanda T, Sullivan KF, Wahl GM. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol. 1998;8:377–85. https://doi.org/10.1016/S0960-9822(98)70156-3.
Qi W, Liu X, Chen W, Li Q, Martinez JD. Overexpression of 14-3-3gamma causes polyploidization in H322 lung cancer cells. Mol Carcinog. 2007;46:847–56. https://doi.org/10.1002/mc.20314.
Roukos V, Pegoraro G, Voss TC, Misteli T. Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc. 2015;10:334–48. https://doi.org/10.1038/nprot.2015.016.
Asthana A, White CM, Douglass M, Kisaalita WS. Evaluation of cellular adhesion and organization in different microporous polymeric scaffolds. Biotechnol Prog. 2018. https://doi.org/10.1002/btpr.2627.
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang I, Friman O, Guertin DA, Chang J, Lindquist RA, Moffat J, Golland P, Sabatini DM. Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. https://doi.org/10.1186/gb-2006-7-10-r100.
Zerjatke T, Gak IA, Kirova D, Fuhrmann M, Daniel K, Gonciarz M, Müller D, Glauche I, Mansfeld J. Quantitative cell cycle analysis based on an endogenous all-in-one reporter for cell tracking and classification. Cell Rep. 2017;19:1953–66. https://doi.org/10.1016/j.celrep.2017.05.022.
Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–98. https://doi.org/10.1016/j.cell.2007.12.033.