Knudsen effusion mass spectrometric determination of the dissociation energy of diniobium, Nb2(g), and the heat of sublimation of solid niobium

Journal of Chemical Physics - Tập 70 Số 12 - Trang 5350-5353 - 1979
S. K. Gupta1, Karl A. Gingerich1
1Department of Chemistry, Texas AM University, College Station, Texas 77843

Tóm tắt

The dimer of niobium, Nb2(g), has been observed under thermal equilibrium conditions by the high temperature mass spectrometric technique, employing an unconventional design for the Knudsen cell. From the partial pressures of Nb and Nb2 measured in the 2545–2677°K temperature range, the dissociation energy of Nb2(g) has been determined to be D0°=503±10 kJ mole−1 or 120.2±2.4 kcal mole−1 and D°298=511±10 kJ mole−1 or 122.0±2.4 kcal mole−1. By combining D (Nb2) with the heat of vaporization of niobium, the heat of formation of Nb2(g) is derived as ΔH°f,298=916±12 kJ mole−1 or 218.9±2.9 kcal mole−1. Also, the heat of vaporization of Nb has been redetermined as ΔH°v,298=713±7 kJ mole−1 or 170.4±1.6 kcal mole−1 and ΔH°v,0=710±7 kJ mole−1 or 169.7±1.6 kcal mole−1. The dissociation energy of Nb2(g) is in good agreement with the value predicted previously and is consistent with the trends indicated for the dissociation energy of the diatomic molecules of the first and second transition series metals.

Từ khóa


Tài liệu tham khảo

1975, Nature (London), 254, 503, 10.1038/254503a0

1976, Chem. Phys. Lett., 44, 108, 10.1016/0009-2614(76)80420-4

1971, J. Cryst. Growth, 9, 31, 10.1016/0022-0248(71)90205-3

1972, Int. Rev. Sci. Phys. Chem. Ser. 1, 10, 209

1978, Inorg. Chem., 17, 3211, 10.1021/ic50189a051

1978, J. Chem. Phys., 69, 4318, 10.1063/1.437085

1979, J. Chem. Phys., 70, 2044, 10.1063/1.437645

1977, Inorg. Chem., 16, 984, 10.1021/ic50171a003

1968, J. Chem. Phys., 49, 14, 10.1063/1.1669799

1971, J. Phys. Chem., 75, 3264, 10.1021/j100690a011

1958, Natl. Bur. Stand. Circ., 467, 86

1974, J. Chem. Phys., 61, 5114, 10.1063/1.1681856

1967, Angew. Chem., 79, 589, 10.1002/ange.19670791302

1967, Angew. Chem. Int. Ed. Engl., 6, 581, 10.1002/anie.196705811

1978, J. Mol. Spectrosc., 73, 430, 10.1016/0022-2852(78)90109-1

1946, Proc. Phys. Soc. London, 58, 456, 10.1088/0959-5309/58/4/313

1959, J. Electrochem. Soc., 106, 52, 10.1149/1.2427264

1936, Philos. Mag., 22, 34, 10.1080/14786443608561665

1975, Teplofiz. Vys. Temp., 13, 441

1966, J. Chem. Phys., 45, 3161, 10.1063/1.1728082

1969, J. Chem. Phys., 51, 1644, 10.1063/1.1672226

1975, Chem. Soc. Rev., 4, 27, 10.1039/cs9750400027

1964, J. Chem. Phys., 41, 3806, 10.1063/1.1725817

1968, Science, 161, 115, 10.1126/science.161.3837.115