Circ_HECW2 functions as a miR-30e-5p sponge to regulate LPS-induced endothelial-mesenchymal transition by mediating NEGR1 expression

Brain Research - Tập 1748 - Trang 147114 - 2020
Yuwei Dong1,2, Xiaoxuan Fan3, Zhe Wang2, Ling Zhang2, Shiwen Guo1
1Neurosurgery Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
2Neurosurgery Department, Center Hospital of Hanzhong City, Hanzhong 723000, Shanxi, China
3Neurosurgery Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China

Tài liệu tham khảo

Abbott, 2010, Structure and function of the blood-brain barrier, Neurobiol. Dis., 37, 13, 10.1016/j.nbd.2009.07.030 Akhter, 2018, Circular RNA and Alzheimer's disease, Adv. Exp. Med. Biol., 1087, 10.1007/978-981-13-1426-1_19 Bai, 2018, Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting mir-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity, J. Neurosci., 38, 32, 10.1523/JNEUROSCI.1348-17.2017 Cao, Y.H., et al. (2016). A microRNA-152 that targets the phosphatase and tensin homolog to inhibit low oxygen induced-apoptosis in human brain microvascular endothelial cells. Genetics and molecular research 15(2). https://doi.org/10.4238/gmr.15027371 Chen, 2018, The role of miR-328 in high glucose-induced endothelial-to-mesenchymal transition in human umbilical vein endothelial cells, Life Sci., 207, 110, 10.1016/j.lfs.2018.05.055 Chen, 2015, Regulation of circRNA biogenesis, RNA Biol., 12, 381, 10.1080/15476286.2015.1020271 Correia, 2016, FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling, J. Cell Sci., 129, 569 Derada Troletti, 2016, Molecular alterations of the blood-brain barrier under inflammatory conditions: the role of endothelial to mesenchymal transition, BBA, 1862, 452 Dieter, C., Assmann, T.S., Costa, A.R., Canani, L.H., de Souza, B.M., Bauer, A.C. and Crispim, D. (2019). MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease. Frontiers in genetics 10(563-563. https://doi.org/10.3389/fgene.2019.00563. Fang, 2018, circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1, Cell Death Dis., 9, 396, 10.1038/s41419-018-0432-1 Huang, 2015, cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway, PLoS ONE, 10, e0131225, 10.1371/journal.pone.0131225 Iparraguirre, 2017, Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis, Hum. Mol. Genet., 26, 3564, 10.1093/hmg/ddx243 Iwao, B., Yara, M., Hara, N., Kawai, Y., Yamanaka, T., Nishihara, H., Inoue, T. and Inazu, M. (2016). Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells. Neurochemistry international 93(40-50. https://doi.org/10.1016/j.neuint.2015.12.011. Jung, 2015, Aqueous extract of Psoralea corylifolia L. inhibits lipopolysaccharide-induced endothelial-mesenchymal transition via downregulation of the NF-κB-SNAIL signaling pathway, Oncol. Rep., 34, 2040, 10.3892/or.2015.4154 Kamphuis, 2015, The blood-brain barrier in multiple sclerosis: microRNAs as key regulators, CNS Neurol. Disord. Drug Targets, 14, 157, 10.2174/1871527314666150116125246 Kim, 2017, The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking, Biochem. Biophys. Res. Commun., 482, 1367, 10.1016/j.bbrc.2016.12.043 Kim, 2016, Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus, HLA, 88, 187, 10.1111/tan.12874 Kim, 2002, Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells, J. Pharmacol. Exp. Therapeut., 300, 709, 10.1124/jpet.300.2.709 Kulcheski, 2016, Circular RNAs are miRNA sponges and can be used as a new class of biomarker, J. Biotechnol., 238(42–51 Kumar, L., Shamsuzzama, Jadiya, P., Haque, R., Shukla, S. and Nazir, A. (2018). Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson's Disease. Molecular neurobiology 55(8), 6914-6926. https://doi.org/10.1007/s12035-018-0903-5. Kumarswamy, 2012, Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21, Arterioscler. Thromb. Vasc. Biol., 32, 361, 10.1161/ATVBAHA.111.234286 Li, 2017, Circular RNA: a new star in neurological diseases, Int. J. Neurosci., 127, 726, 10.1080/00207454.2016.1236382 Lopez-Ramirez, 2014, MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation, FASEB J., 28, 2551, 10.1096/fj.13-248880 Ma, Z., Chao, F., Wang, S., Song, Z., Zhuo, Z., Zhang, J., Xu, G. and Chen, G. (2020). CTHRC1 affects malignant tumor cell behavior and is regulated by miR-30e-5p in human prostate cancer. Biochemical and biophysical research communications, S0006-0291X(0020)30372-30377. Patop, 2018, circRNAs in Cancer, Curr. Opin. Genet. Dev., 48, 121, 10.1016/j.gde.2017.11.007 Piera-Velazquez, 2016, Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases, J. Clin. Med., 5, 45, 10.3390/jcm5040045 Pischedda, 2016, The IgLON family member negr1 promotes neuronal arborization acting as soluble factor via FGFR2, Front. Mol. Neurosci., 8, 89, 10.3389/fnmol.2015.00089 Pischedda, 2015, The role of Negr1 in cortical development via NCAM-FGFR2 signaling, SpringerPlus, 4, P38, 10.1186/2193-1801-4-S1-P38 Reijerkerk, 2013, MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis, J. Neurosci., 33, 6857, 10.1523/JNEUROSCI.3965-12.2013 Sabre, 2019, miR-30e-5p as predictor of generalization in ocular myasthenia gravis, Ann. Clin. Transl. Neurol., 6, 243, 10.1002/acn3.692 Singh, K., Loreth, D., Pöttker, B., Hefti, K., Innos, J., Schwald, K., Hengstler, H., Menzel, L., Sommer, C.J., Radyushkin, K., et al. (2018). Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Frontiers in molecular neuroscience 11, 30-30. https://doi.org/10.3389/fnmol.2018.00030 Sun, 2020, Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery, Circ. Res., 126, 1040, 10.1161/CIRCRESAHA.119.315886 Sweeney, 2019, Blood-brain barrier: from physiology to disease and back, Physiol. Rev., 99, 21, 10.1152/physrev.00050.2017 Takita, 2011, Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in neuroblastoma, Cancer Sci., 102, 1645, 10.1111/j.1349-7006.2011.01995.x Tavazoie, 2008, Endogenous human microRNAs that suppress breast cancer metastasis, Nature, 451, 147, 10.1038/nature06487 Varatharaj, 2017, Systemic inflammation and blood–brain barrier abnormality in relapsing–remitting multiple sclerosis, The Lancet, 389 Wang, 2018, Circular RNA hsa_circ_0000567 can be used as a promising diagnostic biomarker for human colorectal cancer, J. Clin. Lab. Anal., 32, e22379, 10.1002/jcla.22379 Yang, 2018, Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition, Autophagy, 14, 404, 10.1080/15548627.2017.1414755 Zhang, 2020, miR-30e-5p represses angiogenesis and metastasis by directly targeting AEG-1 in squamous cell carcinoma of the head and neck, Cancer Sci., 111, 356, 10.1111/cas.14259 Zhang, 2019, MicroRNA-25-5p counteracts oxidized LDL-induced pathological changes by targeting neuronal growth regulator 1 (NEGR1) in human brain micro-vessel endothelial cells, Biochimie, 165, 141, 10.1016/j.biochi.2019.07.020 Zhang, 2019, miR-30e-5p suppresses cell proliferation and migration in bladder cancer through regulating metadherin, J. Cell. Biochem., 120, 15924, 10.1002/jcb.28866