The number of smallest knots on the cubic lattice
Tóm tắt
It has been shown that the smallest knots on the cubic lattice are all trefoils of length 24. In this paper, we show that the number of such unrooted knots on the cubic lattice is 3496.
Tài liệu tham khảo
Y. Diao, Minimal knotted polygons on the cubic lattice,J. Knot Theory Ramification 2:413–425 (1993).
J. M. Hammersley, The number of polygons on a lattice,Proc. Camb. Philos. Soc. 57:516–523 (1961).
H. Kesten, On the number of self-avoiding walks,J. Math. Phys. 4(7):960–969 (1963).
N. Madras and G. Slade,The Self-Avoiding Walk (Birkhäuser, Boston, 1993).
N. Pippenger, Knots in random walks,Discrete Appl. Math. 25:273–278 (1989).
M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding rings on a lattice,J. Phys. A: Gen. Phys. 5:661–666 (1972).
D. W. Sumners and S. G. Whittington, Knots in self-avoiding walks,J. Phys. A: Math. Gen. 21:1689–1694 (1988).