Lattice gases and exactly solvable models

Journal of Statistical Physics - Tập 68 - Trang 575-590 - 1992
Brosl Hasslacher1, David A. Meyer2
1Los Alamos National Laboratory, Theoretical Division and Center for Nonlinear Studies, Los Alamos
2Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla

Tóm tắt

We detail the construction of a family of lattice gas automata based on a model of 't Hooft, proceeding by use of symmetry principles to define first the kinematics of the model and then the dynamics. A spurious conserved quantity appears; we use it to effect a radical transformation of the model into one whose spacetime configurations are equivalent to the two-dimensional states of an exactly solvable statistical mechanics model, the symmetric eight-vertex model with parameters restricted to a disorder variety. We comment on the implications of this identification for the original lattice gas.

Tài liệu tham khảo

E. Ising, Beitrag zur Theorie des Ferromagnetismus,Z. Physik 31:253–258 (1925); R. Peierls, On Ising's model of ferromagnetism,Proc. Camb. Phil. Soc. 32:477–481 (1936); H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. Part I, II,Phys. Rev. 60:252–262, 263–276 (1941); B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973). C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field,Phys. Rev. Lett. 19:586–588 (1967); B. Sutherland, C. N. Yang, and C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field,Phys. Rev. Lett. 19:588–591 (1967). U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505–1508 (1986). U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, Lattice gas hydrodynamics in two and three dimensions, in Proceedings of the Workshop on Modern Approaches to Large Nonlinear Systems, Santa Fe 1986,Complex Systems 1:649–707 (1987). B. M. Boghosian and C. D. Levermore, A cellular automaton for Burgers' equation,Complex Systems 1:17–30 (1987); P.-M. Binder, Diffusion in Lattice Gases, Ph.D. thesis. Yale University (1989). T. Shimomura, G. D. Doolen, B. Hasslacher, and C. Fu, Calculations using lattice gas techniques,Los Alamos Science 1987(Special Issue):201–210. H. Chen, S. Chen, G. Doolen, Y. C. Lee, and H. Rose, Multithermodynamic phase lattice gas automata incorporating interparticle potentials,Phys. Rev. A 40:2850–2853 (1989); S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, S. Gutman, and B. Travis, Lattice gas automata for flow through porous media, LANL preprint (November 1989). S. Wolfram, Approaches to complexity engineering,Physica 22D:385–399 (1986). S. Harris,An Introduction to the Theory of the Boltzmann Equation (Holt, Rinehart and Winston, New York, 1971); C. Cercignani,Mathematical Methods in Kinetic Theory, 2nd ed. (Plenum Press, New York, 1990). S. Wolfram, Cellular automaton fluids I: Basic theory,J. Stat. Phys. 45:471–526 (1986). E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed percolation,Phys. Rev. Lett. 53:311–314 (1984); P. Rujàn, Cellular automata and statistical mechanical models,J. Stat. Phys. 49:139–222 (1987); A. Georges and P. Le Doussal, From equilibrium spin models to probabilistic cellular automata,J. Stat. Phys. 54:1011–1064 (1989); J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117–170 (1990). R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982). G. 't Hooft, A two-dimensional model with discrete general coordinate-invariance, Duke University preprint (1989). A. B. Zamolodchikov, Tetrahedra equations and integrable systems in three-dimensional space,Sov. Phys. JETP 52:325–336 (1980); Tetrahedron equations and the relativisticS-matrix of straight-strings in 2+1-dimensions,Commun. Math. Phys. 79:489–505 (1981); R. J. Baxter, On Zamolodchikov's solution of the tetrahedron equation,Commun. Math. Phys. 88:185–205 (1983). The Yang-Baxter equations and the Zamolodchikov model,Physica 18D:321–347 (1986). G. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models,Commun. Math. Phys. 132:253–283 (1990); Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state,Commun. Math. Phys. 140:119–131 (1991). S. Takesue, Reversible cellular automata and statistical mechanics,Phys. Rev. Lett. 59:2499–2502 (1987); Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties,J. Stat. Phys. 56:371–402 (1989). Z. Cheng, J. L. Lebowitz, and E. R. Speer, Microscopic shock structure in model particle systems: The Boghosian-Levermore cellular automation revisited,Commun. Pure Appl. Math. 44:971–979 (1991). C. Destri and H. J. de Vega, Light-cone lattice approach to fermionic theories in 2D. The massive Thirring model,Nucl. Phys. B 290[FS20]:363–391 (1987). R. I. Nepomechie, Integrable quantum chains and quantum groups, inSuperstrings and Particle Theory, L. Clavelli and B. Harms, eds. (World Scientific, Singapore, 1990), pp. 319–332. I. G. Enting, Crystal growth models and Ising models: Disorder points,J. Phys. C: Solid State Phys. 10:1379–1388 (1977); M. T. Jaekel and J. M. Maillard, A criterion for disorder solutions of spin models,J. Phys. A: Math. Gen. 18:1229–1238 (1985). D. Kandel and E. Domany, Rigorous derivation of domain growth kinetics without conservation laws,J. Stat. Phys. 58:685–706 (1990). D. Kandel, E. Domany, and B. Nienhuis, A six-vertex model as a diffusion problem: Derivation of correlation functions,J. Phys. A: Math. Gen. 23:L755-L762 (1990). M. N. Barber, Finite-size scaling, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 8 (Academic Press, New York, 1983), Chapter 2; J. L. Cardy, Conformal invariance, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 11 (Academic Press, New York, 1987), Chapter 2. M. Wadati, T. Deguchi, and Y. Akutsu, Exactly solvable models and knot theory,Phys. Rep. 180:247–332 (1989).