Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present

American Association for the Advancement of Science (AAAS) - Tập 292 Số 5517 - Trang 686-693 - 2001
James C. Zachos1, Mark Pagani1, L. C. Sloan1, Ellen Thomas2,3, Katharina Billups4
1Earth Sciences Department, University of California, Santa Cruz, CA 95064, USA
2Center for the Study of Global Change, Yale University, New Haven, CT 06520–8105, USA.
3Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459 USA
4College of Marine Studies, University of Delaware, Lewes, DE 19958, USA

Tóm tắt

Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10 5 to 10 7 years, rhythmic or periodic cycles driven by orbital processes with 10 4 - to 10 6 -year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10 3 to 10 5 years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

Từ khóa


Tài liệu tham khảo

10.1126/science.194.4270.1121

Laskar J., Joutel F., Boudin F., Astron. Astrophys. 270, 522 (1993).

T. J. Crowley K. G. Burke Eds. Tectonic Boundary Conditions for Climate Reconstructions vol. 39 (Oxford Univ. Press New York 1998).

L. A. Lawver L. M. Gahagan in (3) pp. 212–226.

P. Copeland in (15) pp. 20–40.

10.1038/31447

10.1038/35021000

10.1016/0031-0182(91)90073-Z

10.1038/359117a0

10.1086/648215

10.1029/93PA00893

10.2475/ajs.294.1.56

10.1016/0031-0182(95)00012-7

10.1029/96PA03542

W. F. Ruddiman Ed. Tectonic Uplift and Climate Change (Plenum New York 1997).

10.1016/0033-5894(91)90064-C

10.1126/science.240.4855.996

10.1086/648216

All data are expressed in the delta notation δ (‰) = ( 18 O/ 16 O samp / 18 O/ 16 O standard − 1)1000 and are reported relative to the VPDB (Vienna Pee Dee Belemnite) standard. The ratios of the stable isotopes of oxygen ( 18 O/ 16 O) in the calcite (CaCO 3 ) shells of marine organisms such as benthic foraminifera provide information on temperature and the isotopic composition of seawater (i.e. ice volume). In general calcite δ 18 O increases as temperature decreases (0.25‰/°C) or as the mass of continental ice increases (0.1‰/10 m sea-level change). The ratios of stable carbon isotopes ( 13 C/ 12 C) in benthic foraminifera on the other hand reflect on changes in the ratio of the dissolved inorganic carbon (DIC) of ambient seawater. Secular variations in the mean δ 13 C DIC of the ocean in turn reflect on changes in the rates of carbon supply and removal from organic and inorganic reservoirs [Web note 2 (36)] (38).

10.1038/171887c0

N. J. Shackleton J. P. Kennett in Initial Reports of the Deep Sea Drilling Project (U.S. Government Printing Office Washington DC 1975) vol. 29 pp. 743–755.

10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2

Matthews R. K., Poore R. Z., Bull. Am. Assoc. Petrol. Geol. 65, 954 (1981).

10.2307/1485489

10.1038/353225a0

10.1029/95PA01143

10.1038/41528

10.1126/science.285.5428.724

10.1098/rsta.1999.0407

10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2

L. R. Kump M. A. Arthur in (15) pp. 399–426.

10.1038/357320a0

G. R. Dickens J. R. O'Neil

10.1029/94PA03355

10.1126/science.1058288

J. Alroy P. L. Koch J. C. Zachos in Deep Time: Paleobiology's Perspective D. H. Erwin S. L. Wing Eds. (The Paleontological Society Lawrence KS 2000) vol. 26 pp. 259–288.

Supplementary material is available at www.sciencemag.org/cgi/content/full/292/686/5517/DC1.

W. A. Berggren D. V. Kent C. C. I. Swisher M.-P. Aubry in Geochronology Time Scales and Global Stratigraphic Correlation D. V. Kent M.-P. Aubry J. Hardenbol Eds. (Society for Sedimentary Geology Tulsa OK 1995) vol. 54 pp. 129–212.

10.1144/GSL.SP.1987.026.01.27

J. D. Wright K. G. Miller in The Antarctic Paleoenvironment: A Perspective on Global Change J. P. Kennet D. A. Warnke Eds. (American Geophysical Union Washington DC 1993) pp. 1–25.

The presumption of a negligible contribution from ice sheets prior to the earliest Oligocene and large ice-sheets thereafter is supported by several lines of evidence including the distribution of glaciomarine sediment or ice-rafted debris near or on Antarctica and by changes in the distribution and abundances of clay minerals associated with physical weathering in proximal margin and deep-sea sediments ( 47 48 117 – 122 ).

10.1029/93PA03266

10.1126/science.287.5451.269

10.14430/arctic1738

Stott L. D., Kennet J. P., Proc. Ocean Drill. Program Sci. Results 113, 849 (1990).

Barrera E., Huber B. T., Proc. Ocean Drill. Program Kerguelen Plateau Prydz Basin 119, 736 (1991).

10.1016/0031-0182(94)90166-X

10.1016/S0895-9811(98)00035-2

Hambrey M. J., Ehrmann W. U., Larsen B., Proc. Ocean Drill. Program Sci. Results 119, 77 (1991).

10.1029/92PA00760

10.1029/90JB02015

Vincent E., Killingley J. S., Berger W. H., Geol. Soc. Am. Mem. 163, 103 (1985).

10.1029/95PA02022

Kennett J. P., Barker P. F., Proc. Ocean Drill. Program Sci. Results 113, 937 (1990).

10.1016/0025-3227(94)90180-5

10.1016/0377-8398(96)80628-1

10.1098/rstb.1988.0030

10.1016/S0277-3791(97)00047-4

10.1029/94PA00208

10.1016/0031-0182(94)90251-8

10.1029/1999PA000443

10.1029/96PA00571

10.1016/S0031-0182(98)00093-5

10.1007/s005310050157

10.1016/0012-821X(86)90024-5

10.1016/0012-821X(90)90051-X

Mix A. C., et al., Proc. Ocean Drill. Program Sci. Results 138, 371 (1995).

10.1038/385801a0

10.1130/0091-7613(1996)024<0163:EOTITS>2.3.CO;2

10.1126/science.272.5270.1930

10.1126/science.289.5486.1897

___, Hall M., Proc. Ocean Drill. Program Sci. Results 154, 367 (1997).

10.1029/98PA02262

E. Thomas N. J. Shackleton in Correlation of the Early Paleogene in Northwest Europe R. O. Knox R. M. Corfield R. E. Dunay Eds. (Geologic Society London 1996) vol. 247 pp. 481–496.

10.1130/0091-7613(1996)024<0423:RDOPFI>2.3.CO;2

10.1029/1999PA900031

10.1016/0025-3227(92)90010-F

10.1016/S0037-0738(00)00014-2

10.1038/358319a0

10.1016/0012-8252(94)90030-2

10.1144/gsjgs.155.4.0591

10.1016/S0031-0182(97)00024-2

E. Thomas in Late Paleocene Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records M. P. Aubry S. G. Lucas W. A. Berggren Eds. (Columbia Univ. Press New York 1998) pp. 214–243.

Lu G. Y., Adatte T., Keller G., Ortiz N., Eclogae Geol. Helv. 91, 293 (1998).

10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2

10.1016/0031-0182(94)00107-J

10.1130/0091-7613(1998)026<1011:MCRTTL>2.3.CO;2

S. L. Wing in (85) pp. 380–400.

Beard K. C., Dawson M. R., Bull. Soc. Geol. Fr. 170, 697 (1999).

10.1038/35025035

10.1016/S0031-0182(00)00095-X

J. G. Baldauf in Eocene-Oligocene Climatic and Biotic Evolution D. A. Prothero W. A. Berggren Eds. (Princeton Univ. Press Princeton NJ 1992) pp. 310–326.

E. Thomas J. C. Zachos T. J. Bralower in Warm Climates in Earth History B. Huber K. G. MacLeod S. L. Wing Eds. (Cambridge Univ. Press New York 2000) pp. 132–160.

The calcite compensation depth (CCD) represents the depth in the ocean at which dissolved carbonate ion content [CO 3 ] transitions from being saturated to undersaturated. Virtually no biogenic calcite is preserved in sediments beneath this level which at present is roughly 4500 m in the Atlantic and 3500 m in the Pacific. Because the degree of [CO 3 ] saturation is sensitive to fluxes of respired CO 2 and dissolved ions to the ocean the CCD is constantly changing with time.

10.1016/0012-821X(75)90086-2

10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2

D. R. Prothero W. A. Berggren Eds. Late Eocene-Oligocene Climatic and Biotic Evolution (Princeton Univ. Press Princeton NJ 1992).

Fordyce R. E., Am. Paleontologist 8, 2 (2000).

J. A. Wolfe in Cenozoic Climate and Paleogeographic Changes in the Pacific Region K. Ogasawara J. A. Wolfe Eds. (1994).

10.2307/3515129

10.1029/1999PA900006

10.1080/04353676.1993.11880395

10.1016/0025-3227(95)00121-2

10.1126/science.282.5388.436

10.1016/S1040-6182(96)00060-2

B. Cramer Earth Planet. Sci. Lett. in press.

10.1126/science.212.4495.617

10.1029/PA005i002p00147

10.1126/science.255.5045.705

10.1073/pnas.94.16.8362

10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2

Dickens G. R., Bull. Soc. Geol. Fr. 171, 37 (2000).

10.1080/11035890001221188

10.1029/96PA01021

10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO;2

10.1126/science.286.5444.1531

10.1038/35019044

10.1016/0277-3791(91)90033-Q

N. J. Shackleton M. A. Hall A. Boersma Initial Reports of the Deep Sea Drilling Project (U.S. Government Printing Office Washington DC 1984) vol. 74 pp. 599–612.

10.1038/359816a0

S. W. Wise J. R. Breza D. M. Harwood W. Wei in Controversies in Modern Geology (Academic San Diego CA 1991) pp. 133–171.

10.1016/0031-0182(92)90185-8

10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2

10.1016/S0031-0182(97)00138-7

10.1016/S0031-0182(98)00224-7

Supported by NSF grant EAR-9814883.