Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present
Tóm tắt
Từ khóa
Tài liệu tham khảo
Laskar J., Joutel F., Boudin F., Astron. Astrophys. 270, 522 (1993).
T. J. Crowley K. G. Burke Eds. Tectonic Boundary Conditions for Climate Reconstructions vol. 39 (Oxford Univ. Press New York 1998).
L. A. Lawver L. M. Gahagan in (3) pp. 212–226.
P. Copeland in (15) pp. 20–40.
All data are expressed in the delta notation δ (‰) = ( 18 O/ 16 O samp / 18 O/ 16 O standard − 1)1000 and are reported relative to the VPDB (Vienna Pee Dee Belemnite) standard. The ratios of the stable isotopes of oxygen ( 18 O/ 16 O) in the calcite (CaCO 3 ) shells of marine organisms such as benthic foraminifera provide information on temperature and the isotopic composition of seawater (i.e. ice volume). In general calcite δ 18 O increases as temperature decreases (0.25‰/°C) or as the mass of continental ice increases (0.1‰/10 m sea-level change). The ratios of stable carbon isotopes ( 13 C/ 12 C) in benthic foraminifera on the other hand reflect on changes in the ratio of the dissolved inorganic carbon (DIC) of ambient seawater. Secular variations in the mean δ 13 C DIC of the ocean in turn reflect on changes in the rates of carbon supply and removal from organic and inorganic reservoirs [Web note 2 (36)] (38).
N. J. Shackleton J. P. Kennett in Initial Reports of the Deep Sea Drilling Project (U.S. Government Printing Office Washington DC 1975) vol. 29 pp. 743–755.
Matthews R. K., Poore R. Z., Bull. Am. Assoc. Petrol. Geol. 65, 954 (1981).
L. R. Kump M. A. Arthur in (15) pp. 399–426.
G. R. Dickens J. R. O'Neil
J. Alroy P. L. Koch J. C. Zachos in Deep Time: Paleobiology's Perspective D. H. Erwin S. L. Wing Eds. (The Paleontological Society Lawrence KS 2000) vol. 26 pp. 259–288.
Supplementary material is available at www.sciencemag.org/cgi/content/full/292/686/5517/DC1.
W. A. Berggren D. V. Kent C. C. I. Swisher M.-P. Aubry in Geochronology Time Scales and Global Stratigraphic Correlation D. V. Kent M.-P. Aubry J. Hardenbol Eds. (Society for Sedimentary Geology Tulsa OK 1995) vol. 54 pp. 129–212.
J. D. Wright K. G. Miller in The Antarctic Paleoenvironment: A Perspective on Global Change J. P. Kennet D. A. Warnke Eds. (American Geophysical Union Washington DC 1993) pp. 1–25.
The presumption of a negligible contribution from ice sheets prior to the earliest Oligocene and large ice-sheets thereafter is supported by several lines of evidence including the distribution of glaciomarine sediment or ice-rafted debris near or on Antarctica and by changes in the distribution and abundances of clay minerals associated with physical weathering in proximal margin and deep-sea sediments ( 47 48 117 – 122 ).
Stott L. D., Kennet J. P., Proc. Ocean Drill. Program Sci. Results 113, 849 (1990).
Barrera E., Huber B. T., Proc. Ocean Drill. Program Kerguelen Plateau Prydz Basin 119, 736 (1991).
Hambrey M. J., Ehrmann W. U., Larsen B., Proc. Ocean Drill. Program Sci. Results 119, 77 (1991).
Vincent E., Killingley J. S., Berger W. H., Geol. Soc. Am. Mem. 163, 103 (1985).
Kennett J. P., Barker P. F., Proc. Ocean Drill. Program Sci. Results 113, 937 (1990).
Mix A. C., et al., Proc. Ocean Drill. Program Sci. Results 138, 371 (1995).
___, Hall M., Proc. Ocean Drill. Program Sci. Results 154, 367 (1997).
E. Thomas N. J. Shackleton in Correlation of the Early Paleogene in Northwest Europe R. O. Knox R. M. Corfield R. E. Dunay Eds. (Geologic Society London 1996) vol. 247 pp. 481–496.
E. Thomas in Late Paleocene Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records M. P. Aubry S. G. Lucas W. A. Berggren Eds. (Columbia Univ. Press New York 1998) pp. 214–243.
Lu G. Y., Adatte T., Keller G., Ortiz N., Eclogae Geol. Helv. 91, 293 (1998).
S. L. Wing in (85) pp. 380–400.
Beard K. C., Dawson M. R., Bull. Soc. Geol. Fr. 170, 697 (1999).
J. G. Baldauf in Eocene-Oligocene Climatic and Biotic Evolution D. A. Prothero W. A. Berggren Eds. (Princeton Univ. Press Princeton NJ 1992) pp. 310–326.
E. Thomas J. C. Zachos T. J. Bralower in Warm Climates in Earth History B. Huber K. G. MacLeod S. L. Wing Eds. (Cambridge Univ. Press New York 2000) pp. 132–160.
The calcite compensation depth (CCD) represents the depth in the ocean at which dissolved carbonate ion content [CO 3 ] transitions from being saturated to undersaturated. Virtually no biogenic calcite is preserved in sediments beneath this level which at present is roughly 4500 m in the Atlantic and 3500 m in the Pacific. Because the degree of [CO 3 ] saturation is sensitive to fluxes of respired CO 2 and dissolved ions to the ocean the CCD is constantly changing with time.
D. R. Prothero W. A. Berggren Eds. Late Eocene-Oligocene Climatic and Biotic Evolution (Princeton Univ. Press Princeton NJ 1992).
Fordyce R. E., Am. Paleontologist 8, 2 (2000).
J. A. Wolfe in Cenozoic Climate and Paleogeographic Changes in the Pacific Region K. Ogasawara J. A. Wolfe Eds. (1994).
B. Cramer Earth Planet. Sci. Lett. in press.
Dickens G. R., Bull. Soc. Geol. Fr. 171, 37 (2000).
N. J. Shackleton M. A. Hall A. Boersma Initial Reports of the Deep Sea Drilling Project (U.S. Government Printing Office Washington DC 1984) vol. 74 pp. 599–612.
S. W. Wise J. R. Breza D. M. Harwood W. Wei in Controversies in Modern Geology (Academic San Diego CA 1991) pp. 133–171.
Supported by NSF grant EAR-9814883.