A new criterion for assessing discriminant validity in variance-based structural equation modeling

Springer Science and Business Media LLC - Tập 43 - Trang 115-135 - 2014
Jörg Henseler1,2, Christian M. Ringle3,4, Marko Sarstedt5,4
1Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
2ISEGI, Universidade Nova de Lisboa, Lisbon, Portugal
3Hamburg University of Technology (TUHH), Hamburg, Germany
4University of Newcastle, Newcastle, Australia
5Otto von Guericke University Magdeburg, Magdeburg, Germany

Tóm tắt

Discriminant validity assessment has become a generally accepted prerequisite for analyzing relationships between latent variables. For variance-based structural equation modeling, such as partial least squares, the Fornell-Larcker criterion and the examination of cross-loadings are the dominant approaches for evaluating discriminant validity. By means of a simulation study, we show that these approaches do not reliably detect the lack of discriminant validity in common research situations. We therefore propose an alternative approach, based on the multitrait-multimethod matrix, to assess discriminant validity: the heterotrait-monotrait ratio of correlations. We demonstrate its superior performance by means of a Monte Carlo simulation study, in which we compare the new approach to the Fornell-Larcker criterion and the assessment of (partial) cross-loadings. Finally, we provide guidelines on how to handle discriminant validity issues in variance-based structural equation modeling.

Tài liệu tham khảo

Aguirre-Urreta, M. I., Marakas, G. M., & Ellis, M. E. (2013). Measurement of composite reliability in research using partial least squares: some issues and an alternative approach. SIGMIS Database, 44(4), 11–43. Anderson, E. W., & Fornell, C. G. (2000). Foundations of the American customer satisfaction index. Total Quality Management, 11(7), 869–882. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: a review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. Bagozzi, R. P. (1984). A prospectus for theory construction in marketing. Journal of Marketing, 48(1), 11–29. Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: a holistic construal. Administrative Science Quarterly, 27(3), 459–489. Barclay, D. W., Higgins, C. A., & Thompson, R. (1995). The partial least squares approach to causal modeling: personal computer adoption and use as illustration. Technology Studies, 2(2), 285–309. Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: a structural equation perspective. Psychological Bulletin, 110(2), 305–314. Campbell, D. T. (1960). Recommendations for APA test standards regarding construct, trait, or discriminant validity. American Psychologist, 15(8), 546–553. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). Mahwah: Lawrence Erlbaum. Chin, W. W. (2010). How to write up and report PLS analyses. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications in marketing and related fields (pp. 655–690). Berlin: Springer. Clark, L. A., & Watson, D. (1995). Constructing validity: basic issues in objective scale development. Psychological Assessment, 7(3), 309–319. Cording, M., Christmann, P., & King, D. R. (2008). Reducing causal ambiguity in acquisition integration: intermediate goals as mediators of integration decisions and acquisition performance. Academy of Management Journal, 51(4), 744–767. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research, 38(2), 269–277. Diamantopoulos, A., Sarstedt, M., Fuchs, C.,Wilczynski, P., & Kaiser, S. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective. Journal of the Academy of Marketing Science, 40(3), 434–449. Dijkstra, T. K. (2014). PLS’ Janus face – response to professor Rigdon’s ‘rethinking partial least squares modeling: in praise of simple methods’. Long Range Planning, 47(3), 146–153. Dijkstra, T. K., & Henseler, J. (2011). Linear indices in nonlinear structural equation models: best fitting proper indices and other composites. Quality and Quantity, 45(6), 1505–1518. Dijkstra, T. K. and Henseler, J. (2014a). Consistent partial least squares path modeling. MIS Quarterly, forthcoming. Dijkstra, T. K. and Henseler, J. (2014b). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, forthcoming. Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron: University of Akron Press. Farrell, A. M. (2010). Insufficient discriminant validity: a comment on Bove, Pervan, Beatty, and Shiu (2009). Journal of Business Research, 63(3), 324–327. Fornell, C. G., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452. Fornell, C. G., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52–78). Oxford: Blackwell. Fornell, C. G., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. Fornell, C. G., Johnson, M. D., Anderson, E. W., Cha, J., & Bryant, B. E. (1996). The American Customer Satisfaction Index: nature, purpose, and findings. Journal of Marketing, 60(4), 7–18. Gefen, D., & Straub, D. W. (2005). A practical guide to factorial validity using PLS-Graph: tutorial and annotated example. Communications of the AIS, 16, 91–109. Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling techniques and regression: guidelines for research practice. Communications of the AIS, 4, 1–78. Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185–214. Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does PLS have advantages for small sample size or non-normal data? MIS Quarterly, 36(3), 891–1001. Götz, O., Liehr-Gobbers, K., & Krafft, M. (2010). Evaluation of structural equation models using the partial least squares (PLS) approach. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 691–711). Berlin: Springer. Gudergan, S. P., Ringle, C. M., Wende, S., & Will, S. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238–1249. Haenlein, M., & Kaplan, A. M. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Englewood Cliffs: Prentice Hall. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–151. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012a). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012b). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage. Henseler, J. (2012). Why generalized structured component analysis is not universally preferable to structural equation modeling. Journal of the Academy of Marketing Science, 40(3), 402–413. Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–320. Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about partial least squares: comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17(2), 182–209. Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple significance testing. Biometrika, 75(4), 800–802. Holm, S. (1979). A simple sequentially rejective Bonferroni test procedure. Scandinavian Journal of Statistics, 6(1), 65–70. Hui, B. S., & Wold, H. (1982). Consistency and consistency at large of partial least squares estimates. In K. G. Jöreskog, & H. Wold (Eds.), Systems under indirect observation, part II (pp. 119–130). Amsterdam: North Holland. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195–204. Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99. Hwang, H., Malhotra, N. K., Kim, Y., Tomiuk, M. A., & Hong, S. (2010). A comparative study on parameter recovery of three approaches to structural equation modeling. Journal of Marketing Research, 47(4), 699–712. John, O. P., & Benet-Martínez, V. (2000). Measurement: reliability, construct validation, and scale construction. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 339–369). Cambridge: Cambridge University Press. Klein, R., & Rai, A. (2009). Interfirm strategic information flows in logistics supply chain relationships. MIS Quarterly, 33(4), 735–762. Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford Press. Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), 305–328. Loch, K. D., Straub, D. W., & Kamel, S. (2003). Diffusing the Internet in the Arab world: The role of social norms and technological culturation. IEEE Transactions on Engineering Management, 50(1), 45–63. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica. Lu, I. R. R., Kwan, E., Thomas, D. R., & Cedzynski, M. (2011). Two new methods for estimating structural equation models: an illustration and a comparison with two established methods. International Journal of Research in Marketing, 28(3), 258–268. Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: a user’s guide. Mahwah: Lawrence Erlbaum. Marcoulides, G. A., Chin, W. W., & Saunders, C. (2012). When imprecise statistical statements become problematic: a response to Goodhue, Lewis, and Thompson. MIS Quarterly, 36(3), 717-728. McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–270. Milberg, S. J., Smith, H. J., & Burke, S. J. (2000). Information privacy: corporate management and national regulation. Organization Science, 11(1), 35–57. Miller, R. G. (1981). Simultaneous statistical inference. New York: Wiley. Monecke, A., & Leisch, F. (2012). semPLS: structural equation modeling using partial least squares. Journal of Statistical Software, 48(3), 1–32. Mulaik, S. A. (2009). Foundations of factor analysis. New York: Chapman & Hall/CRC. Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: issues and applications. Thousand Oaks: Sage. Nunnally, J. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill. Pavlou, P. A., Liang, H., & Xue, Y. (2007). Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective. MIS Quarterly, 31(1), 105–136. Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: design and implementation. Structural Equation Modeling, 8(2), 287–312. Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: a practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480. Peter, J. P., & Churchill, G. A. (1986). Relationships among research design choices and psychometric properties of rating scales: a meta-analysis. Journal of Marketing Research, 23(1), 1–10. R Core Team (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Ravichandran, T., & Rai, A. (2000). Quality management in systems development: an organizational system perspective. MIS Quarterly, 24(3), 381–415. Reinartz, W. J., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344. Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5–6), 341–358. Rigdon, E. E. (2014). Rethinking partial least squares path modeling: breaking chains and forging ahead. Long Range Planning, 47(3), 161–167. Ringle, C. M., Sarstedt, M., & Mooi, E. A. (2010). Response-based segmentation using finite mixture partial least squares: theoretical foundations and an application to American Customer Satisfaction Index data. Annals of Information Systems, 8, 19–49. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), iii–xiv. Ringle, C. M., Sarstedt, M., & Schlittgen, R. (2014). Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectrum, 36(1), 251–276. Roldán, J. L., & Sánchez-Franco, M. J. (2012). Variance-based structural equation modeling: guidelines for using partial least squares in information systems research. In M. Mora, O. Gelman, A. Steenkamp, & M. Raisinghani (Eds.), Research methodologies, innovations and philosophies in software systems engineering and information systems (pp. 193–221). Hershey: IGI Global. Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425–448.Sarstedt, M. & Mooi, E. A. (2014). A concise guide to market research. The process, data, and methods using IBM SPSS Statistics. Berlin: Springer. Sarstedt, M. & Mooi, E. A. (2014). A concise guide to market research. The process, data, and methods using IBM SPSS Statistics. Berlin: Springer. Schmitt, N. (1978). Path analysis of multitrait-multimethod matrices. Applied Psychological Measurement, 2(2), 157–173. Schmitt, N., & Stults, D. M. (1986). Methodology review: analysis of multitrait-multimethod matrices. Applied Psychological Measurement, 10(1), 1–22. Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–584. Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: looking back and forward. Journal of Operations Management, 24(2), 148–169. Shook, C. L., Ketchen, D. J., Hult, G. T. M., & Kacmar, K. M. (2004). An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25(4), 397–404. Sosik, J. J., Kahai, S. S., & Piovoso, M. J. (2009). Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group Organization Management, 34(1), 5–36. Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation analysis. Psychometrika, 76(2), 257–284. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205. Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: an empirical study. Journal of Management Information Systems, 25(3), 99–132. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425–478. Vilares, M. J., & Coelho, P. S. (2013). Likelihood and PLS estimators for structural equation modeling: an assessment of sample size, skewness and model misspecification effects. In J. Lita da Dilva, F. Caeiro, I. Natário, & C. A. Braumann (Eds.), Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications (pp. 11–33). Berlin: Springer. Vilares, M. J., Almeida, M. H., & Coelho, P. S. (2010). Comparison of likelihood and PLS estimators for structural equation modeling: a simulation with customer satisfaction data. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts, methods and applications (pp. 289–305). Berlin: Springer. Wold, H. (1982). Soft modeling: the basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observations: part II (pp. 1–54). Amsterdam: North-Holland.