Resveratrol inhibits Cdk5 activity through regulation of p35 expression
Tóm tắt
We have previously reported that cyclin-dependent kinase 5 (Cdk5) participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α) induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.
Tài liệu tham khảo
Rocha-Gonzalez HI, Ambriz-Tututi M, Granados-Soto V: Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008, 14: 234–247. 10.1111/j.1755-5949.2008.00045.x
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, et al.: Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275: 218–220. 10.1126/science.275.5297.218
Bhat KPL, Kosmeder JW, Pezzuto JM: Biological effects of resveratrol. Antioxid Redox Signal 2001, 3: 1041–1064. 10.1089/152308601317203567
Granados-Soto V: Pleiotropic effects of resveratrol. Drug News Perspect 2003, 16: 299–307. 10.1358/dnp.2003.16.5.829318
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004, 24: 2783–2840.
Gentilli M, Mazoit JX, Bouaziz H, Fletcher D, Casper RF, Benhamou D, Savouret JF: Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw. Life Sci 2001, 68: 1317–1321. 10.1016/S0024-3205(00)01018-3
Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ: Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998, 273: 21875–21882. 10.1074/jbc.273.34.21875
Bertelli A, Falchi M, Dib B, Pini E, Mukherjee S, Das DK: Analgesic resveratrol? Antioxid Redox Signal 2008, 10: 403–404. 10.1089/ars.2007.1926
Sharma S, Kulkarni SK, Chopra K: Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 2007, 21: 89–94. 10.1111/j.1472-8206.2006.00455.x
Sharma S, Chopra K, Kulkarni SK: Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res 2007, 21: 278–283. 10.1002/ptr.2070
Pham-Marcou TA, Beloeil H, Sun X, Gentili M, Yaici D, Benoit G, Benhamou D, Mazoit JX: Antinociceptive effect of resveratrol in carrageenan-evoked hyperalgesia in rats: prolonged effect related to COX-2 expression impairment. Pain 2008, 140: 274–283. 10.1016/j.pain.2008.08.010
Pareek TK, Kulkarni AB: Cdk5: a new player in pain signaling. Cell Cycle 2006, 5: 585–588. 10.4161/cc.5.6.2578
Utreras E, Futatsugi A, Pareek TK, Kulkarni AB: Molecular Roles of Cdk5 in Pain Signaling. Drug Discov Today Ther Strateg 2009, 6: 105–111. 10.1016/j.ddstr.2009.04.004
Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, Kulkarni AB: Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci USA 2006, 103: 791–796. 10.1073/pnas.0510405103
Yang YR, He Y, Zhang Y, Li Y, Han Y, Zhu H, Wang Y: Activation of cyclin-dependent kinase 5 (Cdk5) in primary sensory and dorsal horn neurons by peripheral inflammation contributes to heat hyperalgesia. Pain 2007, 127: 109–120. 10.1016/j.pain.2006.08.008
Pareek TK, Keller J, Kesavapany S, Agarwal N, Kuner R, Pant HC, Iadarola MJ, Brady RO, Kulkarni AB: Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci USA 2007, 104: 660–665. 10.1073/pnas.0609916104
Xie WY, He Y, Yang YR, Li YF, Kang K, Xing BM, Wang Y: Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the delta-opioid receptor: impaired receptor function and attenuated morphine antinociceptive tolerance. J Neurosci 2009, 29: 3551–3564. 10.1523/JNEUROSCI.0415-09.2009
Utreras E, Futatsugi A, Rudrabhatla P, Keller J, Iadarola MJ, Pant HC, Kulkarni AB: Tumor necrosis factor-alpha regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional activation of p35. J Biol Chem 2009, 284: 2275–2284.
Ohshima T, Kozak CA, Nagle JW, Pant HC, Brady RO, Kulkarni AB: Molecular cloning and chromosomal mapping of the mouse gene encoding cyclin-dependent kinase 5 regulatory subunit p35. Genomics 1996, 35: 372–375. 10.1006/geno.1996.0370
Conte A, Pellegrini S, Tagliazucchi D: Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Res Bull 2003, 62: 29–38. 10.1016/j.brainresbull.2003.08.001
Takahashi S, Ohshima T, Cho A, Sreenath T, Iadarola MJ, Pant HC, Kim Y, Nairn AC, Brady RO, Greengard P, Kulkarni AB: Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proc Natl Acad Sci USA 2005, 102: 1737–1742. 10.1073/pnas.0409456102
Kundu JK, Surh YJ: Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat Res 2004, 555: 65–80.
Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL: ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 2011, 20: 261–270. 10.1093/hmg/ddq460
Miloso M, Bertelli AA, Nicolini G, Tredici G: Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 1999, 264: 141–144. 10.1016/S0304-3940(99)00194-9
Huang Z, Wang C, Wei L, Wang J, Fan Y, Wang L, Wang Y, Chen T: Resveratrol inhibits EMMPRIN expression via P38 and ERK1/2 pathways in PMA-induced THP-1 cells. Biochem Biophys Res Commun 2008, 374: 517–521. 10.1016/j.bbrc.2008.07.058
Woo JH, Lim JH, Kim YH, Suh SI, Min DS, Chang JS, Lee YH, Park JW, Kwon TK: Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 2004, 23: 1845–1853. 10.1038/sj.onc.1207307
Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, et al.: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998, 273: 18623–18632. 10.1074/jbc.273.29.18623
Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC: SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995, 364: 229–233. 10.1016/0014-5793(95)00357-F
Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, et al.: SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001, 98: 13681–13686. 10.1073/pnas.251194298
Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Fukazawa T, Hayashi H: Discovery of quinazolines as a novel structural class of potent inhibitors of NF-kappa B activation. Bioorg Med Chem 2003, 11: 383–391. 10.1016/S0968-0896(02)00440-6
Zelenka PS, Smith J: Therapeutic potential of CDK5 inhibitors to promote corneal epithelial wound healing. Expert Opinion on Therapeutic Patents 2005, 15: 875–887. 10.1517/13543776.15.7.875
Senderowicz AM: Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2003, 2: S84–95.
Gray N, Detivaud L, Doerig C, Meijer L: ATP-site directed inhibitors of cyclin-dependent kinases. Curr Med Chem 1999, 6: 859–875.
Falchi M, Bertelli A, Galazzo R, Vigano P, Dib B: Central antalgic activity of resveratrol. Arch Ital Biol 2010, 148: 389–396.
Sharma SS, Kumar A, Arora M, Kaundal RK: Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy: focus on functional, sensorimotor and biochemical changes. Free Radic Res 2009, 43: 400–408. 10.1080/10715760902801509
Torres-Lopez JE, Ortiz MI, Castaneda-Hernandez G, Alonso-Lopez R, Asomoza-Espinosa R, Granados-Soto V: Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci 2002, 70: 1669–1676. 10.1016/S0024-3205(02)01491-1
Kundu JK, Chun KS, Kim SO, Surh YJ: Resveratrol inhibits phorbol ester-induced cyclooxygenase-2 expression in mouse skin: MAPKs and AP-1 as potential molecular targets. Biofactors 2004, 21: 33–39. 10.1002/biof.552210108
Szewczuk LM, Forti L, Stivala LA, Penning TM: Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem 2004, 279: 22727–22737. 10.1074/jbc.M314302200
Granados-Soto V, Arguelles CF, Ortiz MI: The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology 2002, 43: 917–923. 10.1016/S0028-3908(02)00130-2
Kim HI, Kim TH, Song JH: Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons. Brain Res 2005, 1045: 134–141. 10.1016/j.brainres.2005.03.019
Gupta YK, Sharma M, Briyal S: Antinociceptive effect of trans-resveratrol in rats: Involvement of an opioidergic mechanism. Methods Find Exp Clin Pharmacol 2004, 26: 667–672. 10.1358/mf.2004.26.9.872563
Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y: Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 2010, 7: 46. 10.1186/1742-2094-7-46
Chen CY, Jang JH, Li MH, Surh YJ: Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 2005, 331: 993–1000. 10.1016/j.bbrc.2005.03.237
Manna SK, Mukhopadhyay A, Aggarwal BB: Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 2000, 164: 6509–6519.
Kundu JK, Shin YK, Kim SH, Surh YJ: Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 2006, 27: 1465–1474. 10.1093/carcin/bgi349
Das S, Fraga CG, Das DK: Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res 2006, 40: 1066–1075. 10.1080/10715760600833085
Kutuk O, Poli G, Basaga H: Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol Sci 2006, 90: 120–132.
Ragione FD, Cucciolla V, Criniti V, Indaco S, Borriello A, Zappia V: p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem 2003, 278: 23360–23368. 10.1074/jbc.M300771200
Bickenbach KA, Veerapong J, Shao MY, Mauceri HJ, Posner MC, Kron SJ, Weichselbaum RR: Resveratrol is an effective inducer of CArG-driven TNF-alpha gene therapy. Cancer Gene Ther 2008, 15: 133–139. 10.1038/sj.cgt.7701103
Whitlock NC, Bahn JH, Lee SH, Eling TE, Baek SJ: Resveratrol-induced apoptosis is mediated by early growth response-1, Kruppel-like factor 4, and activating transcription factor 3. Cancer Prev Res (Phila) 2011, 4: 116–127. 10.1158/1940-6207.CAPR-10-0218