Biomolecular assembly strategies to develop potential artificial cellulosomes

Sustainable Chemical Processes - Tập 2 - Trang 1-5 - 2014
Geisa AL Gonçalves1, Yutaro Mori1, Noriho Kamiya1,2
1Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
2Center for Future Chemistry, Kyushu University, Fukuoka, Japan

Tóm tắt

Cellulosic biomass is a sustainable source for fuels and value-added chemicals, and is available in large quantities. One of the key challenges in biomass processing is associated with the establishment of an efficient enzymatic degradation of plant cell wall. A multi-enzymatic complex, cellulosome, was identified as a highly efficient biocatalyst for the hydrolysis of cellulosic biomass in nature. Significant progress has been achieved on cellulosome production and application since its discovery, but there is still a gap for industrial use. Artificial systems are being developed by employing various pairs of proteins and scaffolds with the objective of reconstructing this natural multi-enzymatic complex for sustainable biotechnology application.

Tài liệu tham khảo

Fontes CM, Gilbert HJ: Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010, 79: 655-681. 10.1146/annurev-biochem-091208-085603. Bayer EA, Morag E, Lamed R: The cellulosome - a treasuretrove for biotechnology. TIBTECH. 1994, 12: 379-386. 10.1016/0167-7799(94)90039-6. Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA: Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem. 2001, 276: 21257-21261. 10.1074/jbc.M102082200. Eklund M, Sandstrom K, Teeri TT, Nygren PA: Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex. J Biotechnol. 2004, 109: 277-286. 10.1016/j.jbiotec.2004.01.008. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP: Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol. 2007, 73: 7138-7149. 10.1128/AEM.01306-07. Hyeon JE, Jeon SD, Han SO: Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv. 2013, 31: 936-944. 10.1016/j.biotechadv.2013.03.009. Xu Q, Ding SY, Brunecky R, Bomble YJ, Himmel ME, Baker JO: Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels. 2013, 6 (126): 1-10. Krauss J, Zverlov VV, Schwarz WH: In vitro reconstitution of the completeClostridium thermocellumcellulosome and synergistic activity on crystalline cellulose.Appl Environ Microbiol. 2012, 78: 4301-4307. 10.1128/AEM.07959-11. Smith SP, Bayer EA: Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol. 2013, 23: 686-694. 10.1016/j.sbi.2013.09.002. Chen R, Chen Q, Kim H, Siu K, Sun Q, Tsai SL, Chen W: Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol. 2014, 28: 59-68. 10.1016/j.copbio.2013.11.007. Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD: The rosettazyme: a synthetic cellulosome. J Biotechnol. 2009, 143: 139-144. 10.1016/j.jbiotec.2009.06.019. Kim DM, Umetsu M, Takai K, Matsuyama T, Ishida N, Takahashi H, Asano R, Kumagai I: Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small. 2011, 7: 656-664. 10.1002/smll.201002114. Blanchette C, Lacayo CI, Fischer NO, Hwang M, Thelen MP: Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One. 2012, 7 (8): e42116-10.1371/journal.pone.0042116. Tsai SL, Park M, Chen W: Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. Biotechnol J. 2013, 8: 257-261. 10.1002/biot.201100503. Cunha ES, Hatem CL, Barrick D: Insertion of endocellulase catalytic domains into thermostable consensus ankyrin scaffolds: effects on stability and cellulolytic activity. Appl Environ Microbiol. 2013, 79: 6684-6696. 10.1128/AEM.02121-13. Mori Y, Ozasa S, Kitaoka M, Noda S, Tanaka T, Ichinose H, Kamiya N: Aligning an endoglucanase Cel5A fromThermobifida fuscaon a DNA scaffold: potent design of an artificial cellulosome.Chem Commun (Camb). 2013, 49: 6971-6973. 10.1039/c3cc42614a. Sun Q, Madan B, Tsai SL, DeLisa MP, Chen W: Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis. Chem Commun (Camb). 2014, 50: 1423-1425. 10.1039/c3cc47215a. Tsai SL, DaSilva NA, Chen W: Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol. 2013, 2: 14-21. 10.1021/sb300047u. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002. Zhang YH, Lynd LR: Cellulose utilization byClostridium thermocellum: bioenergetics and hydrolysis product assimilation.Proc Natl Acad Sci U S A. 2005, 102: 7321-7325. 10.1073/pnas.0408734102. Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A. 2006, 103: 16165-16169. 10.1073/pnas.0605381103. You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH: Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol. 2012, 78: 1437-1444. 10.1128/AEM.07138-11. Morais S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA: Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio. 2011, 2 (6): e00233-e00311. 10.1128/mBio.00233-11. McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR: Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl Biochem Biotechnol. 2012, 167: 395-411. 10.1007/s12010-012-9680-1. Sun J, Wen F, Si T, Xu JH, Zhao H: Direct conversion of xylan to ethanol by recombinantSaccharomycescerevisiae strains displaying an engineered minihemicellulosome.Appl Environ Microbiol. 2012, 78: 3837-3845. 10.1128/AEM.07679-11.