Biomolecular assembly strategies to develop potential artificial cellulosomes
Tóm tắt
Cellulosic biomass is a sustainable source for fuels and value-added chemicals, and is available in large quantities. One of the key challenges in biomass processing is associated with the establishment of an efficient enzymatic degradation of plant cell wall. A multi-enzymatic complex, cellulosome, was identified as a highly efficient biocatalyst for the hydrolysis of cellulosic biomass in nature. Significant progress has been achieved on cellulosome production and application since its discovery, but there is still a gap for industrial use. Artificial systems are being developed by employing various pairs of proteins and scaffolds with the objective of reconstructing this natural multi-enzymatic complex for sustainable biotechnology application.
Tài liệu tham khảo
Fontes CM, Gilbert HJ: Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010, 79: 655-681. 10.1146/annurev-biochem-091208-085603.
Bayer EA, Morag E, Lamed R: The cellulosome - a treasuretrove for biotechnology. TIBTECH. 1994, 12: 379-386. 10.1016/0167-7799(94)90039-6.
Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA: Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem. 2001, 276: 21257-21261. 10.1074/jbc.M102082200.
Eklund M, Sandstrom K, Teeri TT, Nygren PA: Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex. J Biotechnol. 2004, 109: 277-286. 10.1016/j.jbiotec.2004.01.008.
Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP: Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol. 2007, 73: 7138-7149. 10.1128/AEM.01306-07.
Hyeon JE, Jeon SD, Han SO: Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv. 2013, 31: 936-944. 10.1016/j.biotechadv.2013.03.009.
Xu Q, Ding SY, Brunecky R, Bomble YJ, Himmel ME, Baker JO: Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnol Biofuels. 2013, 6 (126): 1-10.
Krauss J, Zverlov VV, Schwarz WH: In vitro reconstitution of the completeClostridium thermocellumcellulosome and synergistic activity on crystalline cellulose.Appl Environ Microbiol. 2012, 78: 4301-4307. 10.1128/AEM.07959-11.
Smith SP, Bayer EA: Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol. 2013, 23: 686-694. 10.1016/j.sbi.2013.09.002.
Chen R, Chen Q, Kim H, Siu K, Sun Q, Tsai SL, Chen W: Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol. 2014, 28: 59-68. 10.1016/j.copbio.2013.11.007.
Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD: The rosettazyme: a synthetic cellulosome. J Biotechnol. 2009, 143: 139-144. 10.1016/j.jbiotec.2009.06.019.
Kim DM, Umetsu M, Takai K, Matsuyama T, Ishida N, Takahashi H, Asano R, Kumagai I: Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small. 2011, 7: 656-664. 10.1002/smll.201002114.
Blanchette C, Lacayo CI, Fischer NO, Hwang M, Thelen MP: Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One. 2012, 7 (8): e42116-10.1371/journal.pone.0042116.
Tsai SL, Park M, Chen W: Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. Biotechnol J. 2013, 8: 257-261. 10.1002/biot.201100503.
Cunha ES, Hatem CL, Barrick D: Insertion of endocellulase catalytic domains into thermostable consensus ankyrin scaffolds: effects on stability and cellulolytic activity. Appl Environ Microbiol. 2013, 79: 6684-6696. 10.1128/AEM.02121-13.
Mori Y, Ozasa S, Kitaoka M, Noda S, Tanaka T, Ichinose H, Kamiya N: Aligning an endoglucanase Cel5A fromThermobifida fuscaon a DNA scaffold: potent design of an artificial cellulosome.Chem Commun (Camb). 2013, 49: 6971-6973. 10.1039/c3cc42614a.
Sun Q, Madan B, Tsai SL, DeLisa MP, Chen W: Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis. Chem Commun (Camb). 2014, 50: 1423-1425. 10.1039/c3cc47215a.
Tsai SL, DaSilva NA, Chen W: Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol. 2013, 2: 14-21. 10.1021/sb300047u.
Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002.
Zhang YH, Lynd LR: Cellulose utilization byClostridium thermocellum: bioenergetics and hydrolysis product assimilation.Proc Natl Acad Sci U S A. 2005, 102: 7321-7325. 10.1073/pnas.0408734102.
Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A. 2006, 103: 16165-16169. 10.1073/pnas.0605381103.
You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH: Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol. 2012, 78: 1437-1444. 10.1128/AEM.07138-11.
Morais S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA: Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio. 2011, 2 (6): e00233-e00311. 10.1128/mBio.00233-11.
McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR: Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl Biochem Biotechnol. 2012, 167: 395-411. 10.1007/s12010-012-9680-1.
Sun J, Wen F, Si T, Xu JH, Zhao H: Direct conversion of xylan to ethanol by recombinantSaccharomycescerevisiae strains displaying an engineered minihemicellulosome.Appl Environ Microbiol. 2012, 78: 3837-3845. 10.1128/AEM.07679-11.