A review of operational methods of variational and ensemble‐variational data assimilation

Quarterly Journal of the Royal Meteorological Society - Tập 143 Số 703 - Trang 607-633 - 2017
Ross Bannister1
1Department of Meteorology, National Centre for Earth Observation, University of Reading, UK

Tóm tắt

Variational and ensemble methods have been developed separately by various research and development groups and each brings its own benefits to data assimilation. In the last decade or so, various ways have been developed to combine these methods, especially with the aims of improving the background‐error covariance matrices and of improving efficiency. The field has become confusing, even to many specialists, and so there is now a need to summarize the methods in order to show how they work, how they are related, what benefits they bring, why they have been developed, how they perform, and what improvements are pending. This article starts with a reminder of basic variational and ensemble techniques and shows how they can be combined to give the emerging ensemble‐variational (EnVar) and hybrid methods. A key part of the article includes details of how localization is commonly represented.There has been a particular push to develop four‐dimensional methods that are free of linearized forecast models. This article attempts to provide derivations of the formulations of most popular schemes. These are otherwise scattered throughout the literature or absent. It builds on the nomenclature used to distinguish between methods, and discusses further possible developments to the methods, including the representation of model error.

Từ khóa


Tài liệu tham khảo

10.1080/16000870.2016.1271564

10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

10.1175/MWR-D-15-0252.1

10.5194/npg-21-19-2014

10.1175/MWR3279.1

10.1002/qj.340

10.1175/MWR-D-14-00379.1

10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2

10.1175/MWR2909.1

10.1175/MWR3189.1

10.1256/qj.02.63

10.1175/2010MWR3595.1

10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2

10.1111/j.1600-0870.2006.00165.x

BerreL PannekouckeO DesroziersG StefǎnescuSE ChapnikB RaynaudL.2007. ‘A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging’. InProceedings of the ECMWF Workshop on Flow‐Dependent Aspects of Data Assimilation 11–13 June 2007. ECMWF: Reading UK.

BerreL DesroziersG RaynaudL MontrotyR GibierF.2009. ‘Use of consistent operational ensemble variational assimilation to estimate and diagnose analysis and background error covariances’. InProceedings of the ECMWF Workshop on Diagnostics of Data Assimilation System Performance 15–17 June 2009. ECMWF: Reading UK.

10.1002/qj.2565

Biegler LT, 1997, Large‐Scale Optimization with Applications: Part I: Optimization in Inverse Problems and Design

10.1002/qj.169

10.1111/j.1600-0870.2008.00371.x

10.1111/j.1600-0870.2008.00372.x

10.1175/2010MWR3403.1

10.1175/MWR-D-12-00118.1

10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2

10.1175/2010MWR3405.1

10.1002/qj.313

10.1002/qj.756

10.1002/qj.1899

10.1002/qj.2652

10.1175/MWR-D-12-00031.1

10.1002/qj.234

10.1256/qj.04.15

10.1175/MWR-D-10-05052.1

10.1002/qj.50

10.3402/tellusa.v67.28027

10.1175/2009MWR3157.1

10.1175/2009MWR3158.1

10.5194/npg-20-669-2013

10.1175/MWR‐D‐14‐00354.1

Buehner M, 2015, Seamless Prediction of the Earth System: From Minutes to Months

10.1002/qj.49712556006

10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

10.1175/MWR‐D‐14‐00353.1

10.1002/qj.2054

10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2

CourtierP FreydierC GeleynJ‐F RabierF RochasM.1991. ‘The Arpège project at Météo‐France’. InProceedings of the ECMWF Workshop on Numerical Methods in Atmospheric Models 9–13 September 1991. ECMWF: Reading UK.

10.1002/qj.49712051912

10.1002/qj.49712455002

Daley R, 1991, Atmospheric Data Analysis

10.1256/qj.04.101

10.1175/MWR2929.1

DeeDP.2002. ‘An adaptive scheme for cycling background‐error variances during data assimilation’. InProceedings of ECMWF/GEWEX Workshop on Humidity Analysis 8–11 July 2002. ECMWF: Reading UK.

10.1034/j.1600-0870.1999.t01-2-00003.x

10.1002/qj.1886

10.1002/qj.2325

ECMWF.2015. ‘Documentation for the integrated forecasting system’.https://software.ecmwf.int/wiki/display/IFS/\unhbox\voidb@x\hboxOfficial+IFS+Documentation(accessed 12 January 2017).

10.1127/0941-2948/2007/0256

10.1002/qj.1997

Emerick A, 2012, History Matching and Uncertainty Characterization

10.5194/acp-12-10015-2012

10.1175/1520-0493(2004)132<1065:ROHDAS>2.0.CO;2

10.1029/94JC00572

10.1007/s10236-003-0036-9

Evensen G, 2007, Data Assimilation, The Ensemble Kalman Filter

10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2

10.1002/qj.2135

Fertig EJ, 2008, Assimilating non‐local observations with a local ensemble Kalman Filter, Tellus, 59, 719, 10.1111/j.1600-0870.2007.00260.x

FisherM.1998. ‘Development of a simplified Kalman filter’. Technical Note 260. ECMWF: Reading UK.

FisherM.2003. ‘Background error covariance modelling’. InProceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean 8–12 September 2003. ECMWF: Reading UK.

FisherM AnderssonA.2001. ‘Developments in 4D‐Var and Kalman filtering’. Technical Note 347. ECMWF: Reading UK.

Fisher M, 1995, Estimating the Covariance Matrices of Analysis and Forecast Error in Variational Data Assimilation

10.5194/nhess-12-2671-2012

10.1002/qj.49712555417

10.1080/07055900.1999.9649623

10.1175/MWR3394.1

10.1175/JTECH-D-11-00201.1

10.1016/j.atmosres.2010.12.008

10.3402/tellusa.v67.26928

10.1080/16000870.2016.1271565

10.1175/2010MWR3328.1

10.1111/j.1600-0870.2007.00262.x

10.5194/npg‐21‐745‐2014

10.1111/j.1600-0870.2001.00425.x

10.5194/npg-21-303-2014

10.1111/j.1600-0870.2011.00527.x

10.1111/j.1600-0870.2010.00505.x

10.1017/CBO9780511617652.007

10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2

10.1175/MWR3020.1

10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

10.1175/2010MWR3456.1

10.1175/MWR-D-11-00079.1

10.1175/1520-0450-34.1.3

HoganTF RosmondTE GelaroR.1992. ‘The NOGAPS forecast model: A technical description’. Report AD‐A247 216 Naval Research Laboratory: Monterey CA.www.dtic.mil/dtic/tr/fulltext/u2/a247216.pdf(accessed 12 January 2017).

10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2

10.1256/qj.05.135

10.1175/MWR-D-15-0440.1

10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2

10.1175/MWR-2864.1

10.1175/MWR-D-13-00138.1

HowesK.2016. Accounting for model error in four‐dimensional variational data assimilation. PhD thesis Department of Mathematics University of Reading: Reading UK.

10.1111/j.1600-0870.2004.00066.x

10.2151/jmsj1965.75.1B_181

10.1002/qj.49712757112

Isaksen L, 2010, Ensemble of Data Assimilations at ECMWF

10.1016/S0076-5392(09)60368-4

10.1017/CBO9780511802270

10.1111/j.1600-0870.2007.00261.x

10.1002/qj.443

10.1175/MWR-D-13-00351.1

10.1175/MWR-D-13-00350.1

10.1175/2008MWR2623.1

10.1175/MWR-D-12-00182.1

10.1002/qj.619

10.1002/qj.447

10.1111/j.1600-0870.1986.tb00459.x

LeeM‐S BarkerD HuangW KuoY‐H.2004. ‘First guess at appropriate time (FGAT) with WRF 3D‐Var’. InPreprints for WRF/MM5 Users' Workshop 22–25 June 2004. Boulder CO.http://www.mmm.ucar.edu/mm5/workshop/ws04/Session5/Lee.Mi-Seon1.pdf(accessed 12 January 2017).

10.1175/1520-0493(1999)127<1374:CODAUA>2.0.CO;2

10.1175/2009MWR2835.1

10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2

10.1088/0741-3335/35/8/002

10.1007/BF01589116

10.1175/MWR‐D‐12‐00130.1

10.1175/MWR‐D‐15‐0203.1

10.1175/2008MWR2312.1

10.1175/2008MWR2699.1

10.1002/qj.49711247414

10.1256/qj.02.132

LorencAC.2013. ‘Recommended nomenclature for EnVar data assimilation methods’. In WGNE Blue Book Research Activities in Atmospheric and Oceanic Modelling section01: 7–8. WMO: Geneva Switzerland.http://www.wcrp‐climate.org/WGNE/BlueBook/2013/individual-articles/01_Lorenc_Andrew_EnVar_nomenclature.pdf(accessed 23 December 2016).

10.1002/qj.49712657002

10.1175/MWR-D-14-00195.1

LorenzEN.1996. ‘Predictability: A problem partly solved’. In Proceedings of the Seminar on Predictability. Vol.1. ECMWF: Reading UK.

10.1175/JAS3430.1

10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

10.1175/MWR‐D‐14‐00404.1

10.1175/MWR3352.1

10.1175/2007MWR2106.1

10.1175/2008MWR2270.1

Meng Z, 2012, Encyclopedia of Atmospheric Sciences

10.1256/00359000260498897

NavonIM DaescuDN LiuZ.2005. The impact of background error on incomplete observations for 4D‐Var data assimilation with the FSU GSM. In Computational Science–ICCS 2: 837–844. Atlanta GA.

NCEP Environmental Modeling Center, The Global Forecast System (GFS) – Global Spectral Model (GSM)

OlesonKW DaiY BonanG BosilovichM DickinsonR DirmeyerP HoffmanF HouserP LevisS NiuG‐Y ThorntonP VertensteinM YangZ‐L ZengX.2004. ‘Technical description of the Community Land Model (CLM)’. Technical Note NCAR/TN‐461+STR.NCAR:Boulder CO.http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/TechNote/CLMTechNote.pdf(accessed 13 January 2017).

10.1111/j.1600-0870.2004.00076.x

10.1137/0712047

10.1002/qj.1923

Palmer TN, 2010, Stochastic Physics and Climate Modelling

10.1175/MWR-D-13-00242.1

10.1007/s00703-001-0586-7

10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2

10.1175/mwr‐d‐13‐00131.1

10.1016/j.compfluid.2011.01.037

10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2

10.1175/MWR-D-13-00394.1

10.1175/MWR-D-14-00224.1

10.1256/qj.05.129

10.1002/qj.49712656415

10.1002/qj.32

10.1002/qj.795

10.1002/qj.906

RhodinA.2015. ‘Multi Scale VarEnKF Localisation using Wavelets’. InPresentation at International Symposium on Data Assimilation RIKEN February 2015. Kobe Japan.http://www.data-assimilation.riken.jp/isda2015/program/pdf/8-4.pdf(accessed 13 January 2017).

10.1142/3171

10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2

10.1016/S1364-6826(00)00096-1

10.1175/MWR-D-13-00100.1

10.1029/2011JD017383

10.1175/MWR-D-13-00028.1

10.1002/2013JD020937

10.1256/qj.04.106

SkamarockWC KlempJB DudhiaJ GillDO BarkerDM WangW PowersJG.2005. ‘A description of the advanced research WRF version 2’. Technical Note NCAR/TN‐486+STR. NCAR: Boulder CO.

10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2

10.1002/qj.2211

10.1002/qj.362

10.1002/qj.400

10.1111/j.1600-0870.2005.00136.x

10.1111/j.1600-0870.2007.00274.x

10.1002/qj.49711347812

10.1137/1.9780898717921

10.1175/1520-0493(1988)116<1013:INMI>2.0.CO;2

10.1002/qj.49711750206

10.1029/2008JD010358

10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2

10.1256/qj.05.224

10.1002/qj.94

10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2

UndénP RontuL JärvinenH LynchP CalvoJ CatsG CuxartJ EerolaK ForteliusC Garcia‐MoyaJA JonesC LenderlinkG McDonaldA McGrathR NavascuesB NielsenNW ØdegaardV RodriguezE RummukainenM RõõmR SattlerK SassBH SavijärviH SchreurBW SiggR TheH TijmA.2002. ‘HIRLAM‐5 scientific documentation (2002)’.http://hirlam.org/index.php/hirlam-documentation(accessed 13 January 2017).

10.1256/qj.04.176

10.5194/nhess-12-2631-2012

10.3402/tellusa.v66.23294

10.1175/2010MWR3245.1

10.1175/WAF-D-10-05058.1

10.1175/MWR-D-13-00303.1

10.1175/MWR3307.1

10.1175/MWR3282.1

10.1175/2008MWR2444.1

10.1175/2008MWR2445.1

10.1175/2009MWR2923.1

10.1175/MWR-D-12-00141.1

10.1175/JAMC-D-13-0281.1

10.1256/qj.05.119

10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2

10.1175/2007MWR2018.1

Wunsch C, 2012, Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications

10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2

10.1111/j.1600-0870.2004.00036.x

10.1002/qj.2378

10.1175/MWR-D-11-00023.1

10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2

10.1007/s00376-009-0001-8

10.1175/2010MWR3610.1

10.1175/MWR3101.1

10.1175/MWR-D-12-00075.1

10.1175/1520-0493(1997)125<2274:AGWCAT>2.0.CO;2

10.1175/MWR2946.1