Differential effect of obesity on bone mineral density in White, Hispanic and African American women: a cross sectional study

Nutrition & Metabolism - Tập 2 - Trang 1-7 - 2005
Jonathan P Castro1,2, Linda A Joseph2, John J Shin1, Surender K Arora1,2, John Nicasio2, Joshua Shatzkes1, Irina Raklyar1, Irina Erlikh1, Vincent Pantone1, Gul Bahtiyar2, Leon Chandler1, Lina Pabon1, Sara Choudhry1, Nilofar Ghadiri1, Pramodini Gosukonda1, Rangnath Muniyappa2, Hans von-Gicyzki3, Samy I McFarlane1,2
1Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, USA
2Division of Endocrinology, Diabetes and Hypertension, State University of New York Downstate Medical Center, Brooklyn, USA
3Scientific Computing and Statistics Center, State University of New York Downstate Medical Center, Brooklyn, USA

Tóm tắt

Osteoporosis is a major public health problem with low bone mass affecting nearly half the women aged 50 years or older. Evidence from various studies has shown that higher body mass index (BMI) is a protective factor for bone mineral density (BMD). Most of the evidence, however, is from studies with Caucasian women and it is unclear to what extent ethnicity plays a role in modifying the effect of BMI on BMD. A cross sectional study was performed in which records of postmenopausal women who presented for screening for osteoporosis at 2 urban medical centres were reviewed. Using logistic regression, we examined the interaction of race and BMI after adjusting for age, family history of osteoporosis, maternal fracture, smoking, and sedentary lifestyle on BMD. Low BMD was defined as T-score at the lumbar spine < -1. Among 3,206 patients identified, the mean age of the study population was 58.3 ± 0.24 (Years ± SEM) and the BMI was 30.6 kg/m2. 2,417 (75.4%) were African Americans (AA), 441(13.6%) were Whites and 348 (10.9%) were Hispanics. The AA women had lower odds of having low BMD compared to Whites [Odds ratio (OR) = 0.079 (0.03–0.24) (95% CI), p < 0.01]. The odds ratio of low BMD was not statistically significant between White and Hispanic women. We examined the interaction between race and BMD. For White women; as the BMI increases by unity, the odds of low BMD decreases [OR = 0.9 (0.87–0.94), p < 0.01; for every unit increase in BMI]. AA women had slightly but significantly higher odds of low BMD compared to Whites [OR 1.015 (1.007–1.14), p <0.01 for every unit increase in BMI]. This effect was not observed when Hispanic women were compared to Whites. There is thus a race-dependent effect of BMI on BMD. With each unit increase in BMI, BMD increases for White women, while a slight but significant decrease in BMD occurs in African American women.

Tài liệu tham khảo

Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993, 94: 646-650. 10.1016/0002-9343(93)90218-E. Fulton JP: New guidelines for the prevention and treatment of osteoporosis. National Osteoporosis Foundation. Med Health R I. 1999, 82: 110-111. Melton LJ, Thamer M, Ray NF, Chan JK, Chesnut CH, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, Siris ES: Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997, 12: 16-23. Riggs BL, Melton LJ: The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995, 17: 505S-511S. 10.1016/8756-3282(95)00258-4. Ray NF, Chan JK, Thamer M, Melton LJ: Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997, 12: 24-35. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CCJ, Lindsay R: Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998, 8: 468-489. 10.1007/s001980050093. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM: Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. Jama. 2001, 286: 2815-2822. 10.1001/jama.286.22.2815. Melton LJ: Epidemiology of osteoporosis: predicting who is at risk. Ann N Y Acad Sci. 1990, 592: 295-306; discussion 334-45. Kirchengast S, Peterson B, Hauser G, Knogler W: [Significance of body weight status for bone density in the elderly and very old]. Z Gerontol Geriatr. 2001, 34: 313-318. 10.1007/s003910170055. Valtuena Martinez S: [Obesity and osteoporosis: effect of weight variation on bone mass]. Nutr Hosp. 2002, 17 Suppl 1: 49-54. Kirchengast S, Knogler W, Hauser G: Protective effect of moderate overweight on bone density of the hip joint in elderly and old Austrians. Anthropol Anz. 2002, 60: 187-197. Cifuentes M, Johnson MA, Lewis RD, Heymsfield SB, Chowdhury HA, Modlesky CM, Shapses SA: Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporos Int. 2003, 14: 116-122. Rico H, Arribas I, Casanova FJ, Duce AM, Hernandez ER, Cortes-Prieto J: Bone mass, bone metabolism, gonadal status and body mass index. Osteoporos Int. 2002, 13: 379-387. 10.1007/s001980200043. Felson DT, Zhang Y, Hannan MT, Anderson JJ: Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993, 8: 567-573. Murillo-Uribe A, Aranda-Gallegos JE, Rio de la Loza-Cava MF, Ortiz-Luna G, Mendoza-Torres LJ, Santos-Gonzalez J: [Relation between body mass index and bone mineral density in a sample population of Mexican women]. Ginecol Obstet Mex. 1998, 66: 267-271. Turner LW, Kendrick O, Perry BA: Study classifies low body mass index as risk factor for osteoporotic fracture among older U.S. women. J Ark Med Soc. 1999, 96: 138-141. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL: Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord. 1996, 20: 1027-1032. Ribot C, Tremollieres F, Pouilles JM, Bonneu M, Germain F, Louvet JP: Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone. 1987, 8: 327-331. 10.1016/8756-3282(87)90062-7. Ribot C, Tremollieres F, Pouilles JM: The effect of obesity on postmenopausal bone loss and the risk of osteoporosis. Adv Nutr Res. 1994, 9: 257-271. Tremollieres FA, Pouilles JM, Ribot C: Vertebral postmenopausal bone loss is reduced in overweight women: a longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab. 1993, 77: 683-686. 10.1210/jc.77.3.683. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C: Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res. 1999, 14: 1622-1627. Anderson JJ, Pollitzer WS: Ethnic and genetic differences in susceptibility to osteoporotic fractures. Adv Nutr Res. 1994, 9: 129-149. Silverman SL, Madison RE: Decreased incidence of hip fracture in Hispanics, Asians, and blacks: California Hospital Discharge Data. Am J Public Health. 1988, 78: 1482-1483. Bohannon AD: Osteoporosis and African American women. J Womens Health Gend Based Med. 1999, 8: 609-615. Kessenich CR: Osteoporosis and African-American women. Womens Health Issues. 2000, 10: 300-304. 10.1016/S1049-3867(00)00065-7. Escalante A, del Rincon I: Epidemiology and impact of rheumatic disorders in the United States Hispanic population. Curr Opin Rheumatol. 2001, 13: 104-110. 10.1097/00002281-200103000-00003. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, Nordin BE, Barrett-Connor E, Black D, Bonjour JP, Dawson-Hughes B, Delmas PD, Dequeker J, Ragi Eis S, Gennari C, Johnell O, Johnston CCJ, Lau EM, Liberman UA, Lindsay R, Martin TJ, Masri B, Mautalen CA, Meunier PJ, Khaltaev N: Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int. 1999, 10: 259-264. 10.1007/s001980050224.