RHB-104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn’s disease associated with Mycobacterium paratuberculosis

Gut Pathogens - Tập 8 - Trang 1-8 - 2016
Karel P. Alcedo1, Saisathya Thanigachalam1, Saleh A. Naser1
1Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA

Tóm tắt

Mycobacterium avium subspecies paratuberculosis (MAP) has been implicated as an etiological agent of Crohn’s disease (CD), a debilitating chronic inflammatory bowel disease. Clarithromycin (CLA), clofazimine (CLO), rifabutin (RIF) and other antibiotics have been used individually or in combinations with other drugs to treat mycobacterial diseases including CD. The treatment has varied by regimen, dosage, and duration, resulting in conflicting outcomes and additional suffering to the patients. RHB-104, a drug formula with active ingredients composed of (63.3 %) CLA, (6.7 %) CLO, and (30 %) RIF, has been recently subjected to investigation in an FDA approved Phase III clinical trial to treat patients with moderate to severe CD. In this study, we determined the efficacy of RHB-104 active ingredients against MAP strains isolated from the blood, tissue, and milk of CD patients. Based on fluorescence quenching technology using the Bactec MGIT Para-TB medium, we determined the minimum inhibitory concentration (MIC) of CLA, CLO, RIF individually and in dual and triple combinations against 16 MAP clinical strains and 19 other mycobacteria. The MIC of all drugs against 35 different mycobacteria ranged between 0.25–20 μg/mL. However, the MIC of RHB-104 active ingredients regimen was the lowest at 0.25–10 μg/mL compared to the MIC of the other drugs at 0.5–20 μg/mL. The components of RHB-104 active ingredients at their individual concentrations or in dual combinations were not effective against all microorganisms compared to the triple combinations at MIC level. The MIC of CLA–CLO, CLA–RIF, and CLO–RIF regimens ranged between 0.5–1.25 μg/mL compared to 0.25 μg/mL of bactericidal effect of the triple combination. The data clearly demonstrated that lower concentrations of the triple combination of RHB-104 active ingredients provided synergistic anti-MAP growth activity compared to individual or dual combinations of the drugs. Consequently, this is favorable and should lead to tolerable dosage that is desirable for long-term treatment of CD and Mycobacterium avium complex disease.

Tài liệu tham khảo

Loftus EVJ, Shivashankar R, Tremaine WJ, Harmsen WS, Zinsmeiseter AR, editors. Updated incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota (1970–2011). ACG 2014 Annual Scientific Meeting; 2014. Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand J Gastroenterol. 2015;50(8):942–51. Ooi CJ, Hilmi I, Makharia GK, Gibson PR, Fock KM, Ahuja V, et al. The Asia Pacific consensus statements on Crohn’s disease Part 1: definition, diagnosis and epidemiology. J Gastroenterol Hepatol. 2015;31:45. Esmat S, El Nady M, Elfekki M, Elsherif Y, Naga M. Epidemiological and clinical characteristics of inflammatory bowel diseases in Cairo, Egypt. World J Gastroenterol. 2014;20(3):814–21. Ouakaa-Kchaou A, Gargouri D, Bibani N, Elloumi H, Kochlef A, Kharrat J. Epidemiological evolution of epidemiology of the inflammatory bowel diseases in a hospital of Tunis. Tunis Med. 2013;91(1):70–3. Alatise OI, Otegbayo JA, Nwosu MN, Lawal OO, Ola SO, Anyanwu SN, et al. Characteristics of inflammatory bowel disease in three tertiary health centers in southern Nigeria. West Afr J Med. 2012;31(1):28–33. Danese S, Fiorino G, Mary JY, Lakatos PL, D’Haens G, Moja L, et al. Development of red flags index for early referral of adults with symptoms and signs suggestive of Crohn’s disease: an IOIBD initiative. J Crohn’s Colitis. 2015;9:601. Greenstein RJ, Collins MT. Emerging pathogens: is Mycobacterium avium subspecies paratuberculosis zoonotic? Lancet. 2004;364(9432):396–7. Stevenson K. Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: a review. Vet Res. 2015;46:64. Greenstein RJ, Cameron DW, Brown ST. “Add-on”is scientifically more accurate than “placebo control” in multiple inflammatory bowel disease (IBD) trials. J Crohn’s Colitis. 2014;8(10):1334–5. Chang MI, Cohen BL, Greenstein AJ. A review of the impact of biologics on surgical complications in Crohn’s disease. Inflamm Bowel Dis. 2015;21(6):1472–7. Nuti F, Civitelli F, Bloise S, Oliva S, Aloi M, La Torre G, et al. Prospective evaluation of the achievement of mucosal healing with anti-with TNF-alpha therapy in a pediatric Crohn’s disease Cohort. J Crohn’s Colitis. 2015;10:5. O’Toole A, Moss AC. Optimizing biologic agents in ulcerative colitis and Crohn’s disease. Curr Gastroenterol Rep. 2015;17(8):453. Meyer L, Simian D, Lubascher J, Acuna R, Figueroa C, Silva G, et al. Adverse events associated with the treatment of inflammatory bowel disease. Rev Med Chil. 2015;143(1):7–13. Luo Y, Yu J, Zhao H, Lou J, Chen F, Peng K, et al. Short-term efficacy of exclusive enteral nutrition in pediatric Crohn’s disease: practice in China. Gastroenterol Res Prac. 2015;2015:428354. Gasparetto M, Angriman I, Guariso G. The multidisciplinary health care team in the management of stenosis in Crohn’s disease. J Multidiscip Healthc. 2015;8:167–79. Funayama Y, Suzuki H, Takahashi K, Haneda S, Watanabe K, Ikezawa F, et al. Surgical management of intestinal Crohn’s disease. Nihon Geka Gakkai Zasshi. 2015;116(2):94–8. Borody TJ, Leis S, Warren EF, Surace R. Treatment of severe Crohn’s disease using antimycobacterial triple therapy–approaching a cure? Dig Liver Dis. 2002;34(1):29–38. Selby W, Pavli P, Crotty B, Florin T, Radford-Smith G, Gibson P, et al. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology. 2007;132(7):2313–9. Chamberlin W, Ghobrial G, Chehtane M, Naser SA. Successful treatment of a Crohn’s disease patient infected with bacteremic Mycobacterium paratuberculosis. Am J Gastroenterol. 2007;102(3):689–91. Chamberlin W, Naser SA. Blood cultures of 19 Crohn’s disease patients. Am J Gastroenterol. 2008;103(3):802–3. Naser SA, Ghobrial G, Romero C, Valentine JF. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet. 2004;364(9439):1039–44. Krishnan MY, Manning EJ, Collins MT. Effects of interactions of antibacterial drugs with each other and with 6-mercaptopurine on in vitro growth of Mycobacterium avium subspecies paratuberculosis. J Antimicrob Chemother. 2009;64(5):1018–23. Ricchi M, De Cicco C, Kralik P, Babak V, Boniotti MB, Savi R, et al. Evaluation of viable Mycobacterium avium subsp. paratuberculosis in milk using peptide-mediated separation and Propidium Monoazide qPCR. FEMS Microbiol Lett. 2014;356(1):127–33. Faria AC, Schwarz DG, Carvalho IA, Rocha BB, De Carvalho Castro KN, Silva MR, et al. Short communication: viable Mycobacterium avium subspecies paratuberculosis in retail artisanal Coalho cheese from Northeastern Brazil. J Dairy Sci. 2014;97(7):4111–4. Eltholth MM, Marsh VR, Van Winden S, Guitian FJ. Contamination of food products with Mycobacterium avium paratuberculosis: a systematic review. J Appl Microbiol. 2009;107(4):1061–71. Grant IR, Ball HJ, Neill SD, Rowe MT. Inactivation of Mycobacterium paratuberculosis in cows’ milk at pasteurization temperatures. Appl Environ Microbiol. 1996;62(2):631–6. Hafner R, Bethel J, Power M, Landry B, Banach M, Mole L, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother. 1998;42(3):631–9. Rastogi N, Goh KS, Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob Agents Chemother. 1992;36(12):2843–6. Chiodini RJ. Bactericidal activities of various antimicrobial agents against human and animal isolates of Mycobacterium paratuberculosis. Antimicrob Agents Chemother. 1990;34(2):366–7. Zanetti S, Molicotti P, Cannas S, Ortu S, Ahmed N, Sechi LA. “In vitro” activities of antimycobacterial agents against Mycobacterium avium subsp. paratuberculosis linked to Crohn’s disease and paratuberculosis. Ann Clin Microbiol Antimicrob. 2006;5:27. Stoffels K, Traore H, Vanderbist F, Fauville-Dufaux M. The effect of combined tobramycin-clarithromycin on Mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis. 2009;13(8):1041–4. Bennie CJ, To JL, Martin PA, Govendir M. In vitro interaction of some drug combinations to inhibit rapidly growing mycobacteria isolates from cats and dogs and these isolates’ susceptibility to cefovecin and clofazimine. Aust Vet J. 2015;93(1–2):40–5. Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, et al. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet. 2013;28(5):411–5. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol. 2004;94(9):1140–6. Desta Z, Kerbusch T, Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther. 1999;65(1):10–20. Liukas A, Hagelberg NM, Kuusniemi K, Neuvonen PJ, Olkkola KT. Inhibition of cytochrome P450 3A by clarithromycin uniformly affects the pharmacokinetics and pharmacodynamics of oxycodone in young and elderly volunteers. J Clin Psychopharmacol. 2011;31(3):302–8.