Daniel S. Marigold1, Aftab E. Patla1
1Gait and Posture Lab, Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Tóm tắt
Falls due to slips are prevalent in everyday life. The purpose of this study was to determine the reactive recovery responses used to maintain dynamic stability during an unexpected slip, establish the time course of response adaptation to repeated slip perturbations, and distinguish the proactive strategies for negotiating a slippery surface. Twelve young adults participated in the study in which a slip was generated following foot contact on a set of steel free-wheeling rollers. Surface electromyographic (EMG) data were collected from rectus femoris, biceps femoris, tibialis anterior, and the medial head of gastrocnemius on the perturbed limb. Whole body kinematics were recorded using an optical imaging system: from this the center of mass, foot angle, and medial-lateral stability margins were determined. In addition, braking/loading and accelerating/unloading impulses while in contact with the rollers and the rate of loading the rollers were determined from ground reaction forces. Results demonstrate that the reactive recovery response to the first slip consisted of a rapid onset of a flexor synergy (146–199 ms), a large arm elevation strategy, and a modified swing limb trajectory. With repeated exposure to the slip perturbation, the CNS rapidly adapts within one slip trial through global changes. These changes include the attenuation of muscle response magnitude, reduced braking impulse, landing more flat-footed, and elevating the center of mass. Individuals implement a “surfing strategy” while on the rollers when knowledge of the surface condition was available before hand. Furthermore, knowledge of a slip results in a reduced braking impulse and rate of loading, a shift in medial-lateral center of mass closer to the support limb at foot contact on the rollers and a more flat foot landing. In conclusion, prior experience with the perturbations allows subsequent modification and knowledge of the surface condition results in proactive adjustments to safely traverse the slippery surface.