Logratio Analysis and Compositional Distance

J. Aitchison1, C. Barceló-Vidal2, J. A. Martín-Fernández2, V. Pawlowsky-Glahn3
1Department of Statistics, University of Glasgow, Glasgow, UK
2Escola Politècnica Superior, Dept. d'Informàtica i Matemàtica Aplicada, Universitat de Girona, Girona, Spain
3E. T. S. d'Eng. de Camins, Cannals i Ports, Dept. de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Barcelona, Spain

Tóm tắt

The concept of distance between two compositions is important in the statistical analysis of compositional data, particularly in such activities as cluster analysis and multidimensional scaling. This paper exposes the fallacies in a recent criticism of logratio-based distance measures—in particular, the misstatements that logratio methods destroy distance structures and are denominator dependent. Emphasis is on ensuring that compositional data analysis involving distance concepts satisfies certain logically necessary invariance conditions. Logratio analysis and its associated distance measures satisfy these conditions.

Tài liệu tham khảo

Aitchison, J., 1983, Principal component analysis of compositional data: Biometrika, v. 70, p. 57–65. Aitchison, J., 1986, The Statistical Analysis of Compositional Data: Chapman & Hall, London. Aitchison, J., 1992, On criteria for measures of compositional differences: Math. Geology, v. 24, p. 365–380. Aitchison, J., 1994, Principles of compositional data analysis, in T. W. Anderson, I. Olkin, and K. T. Fang, eds., Multivariate analysis and its applications: California Institute of Mathematical Statistics, Hayward, p. 73–81. Aitchison, J., 1997, The one hour course in compositional data analysis, or Compositional data analysis is easy, in V. Pawlowsky-Glahn, ed., Proceedings of IAMG97, The Third Annual Conference of the International Association for Mathematical Geology: Universitat Politècnica de Catalunya, Barcelona, p. 3–35. Doveton, J. H., 1998, Beyond the perfect martini: Teaching the mathematics of petrological logs, in A. Buccianti, G. Nardi, and R. Potenza, Proceedings of IAMG98, The Fourth Annual Conference of the International Association for Mathematical Geology: De Frede, Naples, p. 71–75. Martìn, M. C., 1996, Performance of eight dissimilarity coefficients to cluster a compositional data set, in Abstracts of IFCS-96, Fifth Conference of the International Federation of Classification Societies, Kobe, Japan, Abstracts, v. 1, p. 215–217. Martìn-Fernández, J. A., Barceló-Vidal, C., and Pawlowsky-Glahn, V., 1998, Measures of difference for compositional data and hierarchical clustering methods, in A. Buccianti, G. Nardi, and R. Potenza, eds., Proceedings of IAMG'98, The Fourth Annual Conference of the International Association for Mathematical Geology: De Frede, Naples, p. 526–531. Zier, U., and Rehder, S., 1998, Grain-size analysis-A closed data problem, in A. Buccianti, G. Nardi, and R. Potenza, Proceedings of IAMG98, The Fourth Annual Conference of the International Association for Mathematical Geology: De Frede, Naples, p. 555–558.