Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina
Tóm tắt
Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.
Tài liệu tham khảo
Agathocleous M, Harris WA: From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol. 2009, 25: 45-69. 10.1146/annurev.cellbio.042308.113259.
Graw J: Eye development. Curr Top Dev Biol. 2010, 90: 343-386.
Kadomatsu K, Muramatsu T: Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2004, 204: 127-143. 10.1016/S0304-3835(03)00450-6.
Livesey FJ, Young TL, Cepko CL: An analysis of the gene expression program of mammalian neural progenitor cells. Proc Natl Acad Sci U S A. 2004, 101: 1374-1379. 10.1073/pnas.0307014101.
Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, Jalkanen M, Thesleff I: Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development. 1995, 121: 37-51.
Nurcombe V, Fraser N, Herlaar E, Heath JK: MK: a pluripotential embryonic stem-cell-derived neuroregulatory factor. Development. 1992, 116: 1175-1183.
Yao X, Tan Z, Gu B, Wu RR, Liu YK, Dai LC, Zhang M: Promotion of self-renewal of embryonic stem cells by midkine. Acta Pharmacol Sin. 2010, 31: 629-637. 10.1038/aps.2010.39.
Winkler C, Schafer M, Duschl J, Schartl M, Volff JN: Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res. 2003, 13: 1067-1081. 10.1101/gr.1097503.
Calinescu AA, Raymond PA, Hitchcock PF: Midkine expression is regulated by the circadian clock in the retina of the zebrafish. Vis Neurosci. 2009, 26: 1-7. 10.1017/S0952523808081005.
Calinescu AA, Vihtelic TS, Hyde DR, Hitchcock PF: Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish. J Comp Neurol. 2009, 514: 1-10. 10.1002/cne.21999.
Liedtke D, Winkler C: Midkine-b regulates cell specification at the neural plate border in zebrafish. Dev Dyn. 2008, 237: 62-74. 10.1002/dvdy.21384.
Kay JN, Link BA, Baier H: Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development. 2005, 132: 2573-2585. 10.1242/dev.01831.
Masai I, Stemple DL, Okamoto H, Wilson SW: Midline signals regulate retinal neurogenesis in zebrafish. Neuron. 2000, 27: 251-263. 10.1016/S0896-6273(00)00034-9.
Li Z, Hu M, Ochocinska MJ, Joseph NM, Easter SS: Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev Dyn. 2000, 219: 391-401. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1063>3.0.CO;2-G.
Hu M, Easter SS: Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol. 1999, 207: 309-321. 10.1006/dbio.1998.9031.
Nasevicius A, Ekker SC: Effective targeted gene 'knockdown' in zebrafish. Nat Genet. 2000, 26: 216-220. 10.1038/79951.
Nowakowski RS, Lewin SB, Miller MW: Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989, 18: 311-318. 10.1007/BF01190834.
Quastler H, Sherman FG: Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res. 1959, 17: 420-438. 10.1016/0014-4827(59)90063-1.
Baye LM, Link BA: The disarrayed mutation results in cell cycle and neurogenesis defects during retinal development in zebrafish. BMC Dev Biol. 2007, 7: 28-10.1186/1471-213X-7-28.
Ohnuma S, Hopper S, Wang KC, Philpott A, Harris WA: Coordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development. 2002, 129: 2435-2446.
Vernon AE, Philpott A: The developmental expression of cell cycle regulators in Xenopus laevis. Gene Expr Patterns. 2003, 3: 179-192. 10.1016/S1567-133X(03)00006-1.
Uribe RA, Gross JM: Id2a influences neuron and glia formation in the zebrafish retina by modulating retinoblast cell cycle kinetics. Development. 2010, 137: 3763-3774. 10.1242/dev.050484.
Thisse B, Pfumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier X, Charbonnier XQ: Expression of the zebrafish genome during embryogenesis. ZFIN online publication. 2004, [http://zfin.org]
Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW: The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development. 2010, 137: 2107-2115. 10.1242/dev.047753.
Kikuchi-Horie K, Kawakami E, Kamata M, Wada M, Hu JG, Nakagawa H, Ohara K, Watabe K, Oyanagi K: Distinctive expression of midkine in the repair period of rat brain during neurogenesis: immunohistochemical and immunoelectron microscopic observations. J Neurosci Res. 2004, 75: 678-687. 10.1002/jnr.20015.
Mirkin BL, Clark S, Zheng X, Chu F, White BD, Greene M, Rebbaa A: Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene. 2005, 24: 4965-4974. 10.1038/sj.onc.1208671.
Zou P, Muramatsu H, Miyata T, Muramatsu T: Midkine, a heparin-binding growth factor, is expressed in neural precursor cells and promotes their growth. J Neurochem. 2006, 99: 1470-1479. 10.1111/j.1471-4159.2006.04138.x.
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D: Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA. 1996, 93: 589-595. 10.1073/pnas.93.2.589.
Harris WA: Cellular diversification in the vertebrate retina. Curr Opin Genet Dev. 1997, 7: 651-658. 10.1016/S0959-437X(97)80013-5.
Baye LM, Link BA: Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J Neurosci. 2007, 27: 10143-10152. 10.1523/JNEUROSCI.2754-07.2007.
Tzeng SF: Inhibitors of DNA binding in neural cell proliferation and differentiation. Neurochem Res. 2003, 28: 45-52. 10.1023/A:1021691911011.
Iavarone A, Lasorella A: ID proteins as targets in cancer and tools in neurobiology. Trends Mol Med. 2006, 12: 588-594. 10.1016/j.molmed.2006.10.007.
Ruzinova MB, Benezra R: Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003, 13: 410-418. 10.1016/S0962-8924(03)00147-8.
Du Y, Xiao Q, Yip HK: Regulation of retinal progenitor cell differentiation by bone morphogenetic protein 4 is mediated by the smad/id cascade. Invest Ophthalmol Vis Sci. 2010, 51: 3764-3773. 10.1167/iovs.09-4906.
Chong SW, Nguyen TT, Chu LT, Jiang YJ, Korzh V: Zebrafish id2 developmental expression pattern contains evolutionary conserved and species-specific characteristics. Dev Dyn. 2005, 234: 1055-1063. 10.1002/dvdy.20625.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203: 253-310. 10.1002/aja.1002030302.
Ochocinska MJ, Hitchcock PF: Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish. J Comp Neurol. 2007, 501: 1-12. 10.1002/cne.21150.
Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB: The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007, 236: 3088-3099. 10.1002/dvdy.21343.
Blechinger SR, Evans TG, Tang PT, Kuwada JY, Warren JT, Krone PH: The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mech Dev. 2002, 112: 213-215. 10.1016/S0925-4773(01)00652-9.
Alexiades MR, Cepko C: Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn. 1996, 205: 293-307. 10.1002/(SICI)1097-0177(199603)205:3<293::AID-AJA9>3.0.CO;2-D.
Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Prot. 2008, 3: 1101-1108. 10.1038/nprot.2008.73.