Modulation of bacterial outer membrane vesicle production by envelope structure and content

Carmen Schwechheimer1, Adam Kulp2, Meta J Kuehn1
1Department of Biochemistry, Duke University Medical Center, Durham, USA
2Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA

Tóm tắt

Vesiculation is a ubiquitous secretion process of Gram-negative bacteria, where outer membrane vesicles (OMVs) are small spherical particles on the order of 50 to 250 nm composed of outer membrane (OM) and lumenal periplasmic content. Vesicle functions have been elucidated in some detail, showing their importance in virulence factor secretion, bacterial survival, and biofilm formation in pathogenesis. Furthermore, OMVs serve as an envelope stress response, protecting the secreting bacteria from internal protein misfolding stress, as well as external envelope stressors. Despite their important functional roles very little is known about the regulation and mechanism of vesicle production. Based on the envelope architecture and prior characterization of the hypervesiculation phenotypes for mutants lacking the lipoprotein, Lpp, which is involved in the covalent OM-peptidoglycan (PG) crosslinks, it is expected that an inverse relationship exists between OMV production and PG-crosslinked Lpp. In this study, we found that subtle modifications of PG remodeling and crosslinking modulate OMV production, inversely correlating with bound Lpp levels. However, this inverse relationship was not found in strains in which OMV production is driven by an increase in “periplasmic pressure” resulting from the accumulation of protein, PG fragments, or lipopolysaccharide. In addition, the characterization of an nlpA deletion in backgrounds lacking either Lpp- or OmpA-mediated envelope crosslinks demonstrated a novel role for NlpA in envelope architecture. From this work, we conclude that OMV production can be driven by distinct Lpp concentration-dependent and Lpp concentration-independent pathways.

Từ khóa


Tài liệu tham khảo

Berleman J, Auer M: The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol. 2013, 15 (2): 347-354. 10.1111/1462-2920.12048.

Deatherage BL, Cookson BT: Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012, 80 (6): 1948-1957. 10.1128/IAI.06014-11.

Kulp A, Kuehn MJ: Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010, 64: 163-184. 10.1146/annurev.micro.091208.073413.

Schwechheimer C, Sullivan CJ, Kuehn MJ: Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry. 2013, 52 (18): 3031-3040. 10.1021/bi400164t.

Beveridge TJ: Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999, 181 (16): 4725-4733.

MacDonald IA, Kuehn MJ: Offense and defense: microbial membrane vesicles play both ways. Res Microbiol. 2013, 163 (9–10): 607-618.

Ellis TN, Kuehn MJ: Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010, 74 (1): 81-94. 10.1128/MMBR.00031-09.

Schooling SR, Beveridge TJ: Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol. 2006, 188 (16): 5945-5957. 10.1128/JB.00257-06.

Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S: Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 2009, 9: 197-10.1186/1471-2180-9-197.

McMahon KJ, Castelli ME, Vescovi EG, Feldman MF: Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J Bacteriol. 2012, 194 (12): 3241-3249. 10.1128/JB.00016-12.

Maredia R, Devineni N, Lentz P, Dallo SF, Yu J, Guentzel N, Chambers J, Arulanandam B, Haskins WE, Weitao T: Vesiculation from Pseudomonas aeruginosa under SOS. Sci World J. 2012, 2012: 402919-10.1100/2012/402919.

McBroom AJ, Kuehn MJ: Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol. 2007, 63 (2): 545-558. 10.1111/j.1365-2958.2006.05522.x.

Manning AJ, Kuehn MJ: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011, 11: 258-10.1186/1471-2180-11-258.

Manning AJ, Kuehn MJ: Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol. 2013, 23 (1–2): 131-141. 10.1159/000346548.

Schwechheimer C, Kuehn MJ: Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol. 2013, 195 (18): 4161-4173. 10.1128/JB.02192-12.

Tashiro Y, Sakai R, Toyofuku M, Sawada I, Nakajima-Kambe T, Uchiyama H, Nomura N: Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J Bacteriol. 2009, 191 (24): 7509-7519. 10.1128/JB.00722-09.

Macdonald IA, Kuehn MJ: Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol. 2013, 195 (13): 2971-2981. 10.1128/JB.02267-12.

Silhavy TJ, Kahne D, Walker S: The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010, 2 (5): a000414-10.1101/cshperspect.a000414.

Galloway SM, Raetz CR: A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J Biol Chem. 1990, 265 (11): 6394-6402.

Raetz CR: Biochemistry of endotoxins. Annu Rev Biochem. 1990, 59: 129-170. 10.1146/annurev.bi.59.070190.001021.

Raetz CR, Whitfield C: Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002, 71: 635-700. 10.1146/annurev.biochem.71.110601.135414.

Vollmer W, Bertsche U: Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta. 2008, 1778 (9): 1714-1734. 10.1016/j.bbamem.2007.06.007.

Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R: Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol. 2002, 184 (3): 754-759. 10.1128/JB.184.3.754-759.2002.

Braun V: Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta. 1975, 415 (3): 335-377. 10.1016/0304-4157(75)90013-1.

Braun V, Rehn K: Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall: the specific effect of trypsin on the membrane structure. Eur J Biochem. 1969, 10 (3): 426-438. 10.1111/j.1432-1033.1969.tb00707.x.

Wang Y: The function of OmpA in Escherichia coli. Biochem Biophys Res Commun. 2002, 292 (2): 396-401. 10.1006/bbrc.2002.6657.

Mashburn-Warren LM, Whiteley M: Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006, 61 (4): 839-846. 10.1111/j.1365-2958.2006.05272.x.

Hoekstra D, van der Laan JW, de Leij L, Witholt B: Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta. 1976, 455 (3): 889-899. 10.1016/0005-2736(76)90058-4.

Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT: Biogenesis of bacterial membrane vesicles. Mol Microbiol. 2009, 72 (6): 1395-1407. 10.1111/j.1365-2958.2009.06731.x.

Sonntag I, Schwarz H, Hirota Y, Henning U: Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol. 1978, 136 (1): 280-285.

McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ: Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol. 2006, 188 (15): 5385-5392. 10.1128/JB.00498-06.

Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM: Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol. 2014, 80 (11): 3469-3483. 10.1128/AEM.04248-13.

Henry R, Lo M, Khoo C, Zhang H, Boysen RI, Picardeau M, Murray GL, Bulach DM, Adler B: Precipitation of iron on the surface of Leptospira interrogans is associated with mutation of the stress response metalloprotease HtpX. Appl Environ Microbiol. 2013, 79 (15): 4653-4660. 10.1128/AEM.01097-13.

Hayashi J, Hamada N, Kuramitsu HK: The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol Lett. 2002, 216 (2): 217-222. 10.1111/j.1574-6968.2002.tb11438.x.

Magnet S, Dubost L, Marie A, Arthur M, Gutmann L: Identification of the L, D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol. 2008, 190 (13): 4782-4785. 10.1128/JB.00025-08.

Glauner B, Holtje JV, Schwarz U: The composition of the murein of Escherichia coli. J Biol Chem. 1988, 263 (21): 10088-10095.

Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT: Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 1994, 13 (19): 4684-4694.

Uehara T, Park JT: An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol. 2007, 189 (15): 5634-5641. 10.1128/JB.00446-07.

Lima S, Guo MS, Chaba R, Gross CA, Sauer RT: Dual molecular signals mediate the bacterial response to outer-membrane stress. Science. 2013, 340 (6134): 837-841. 10.1126/science.1235358.

Gmeiner J, Schlecht S: Molecular organization of the outer membrane of Salmonella typhimurium. Eur J Biochem. 1979, 93 (3): 609-620. 10.1111/j.1432-1033.1979.tb12861.x.

Klein G, Kobylak N, Lindner B, Stupak A, Raina S: Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J Biol Chem. 2014, 289 (21): 14829-14853. 10.1074/jbc.M113.539494.

Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H: Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol. 1999, 31 (3): 833-844. 10.1046/j.1365-2958.1999.01221.x.

Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi JL, Petit-Frere S, Marie A, Mengin-Lecreulx D, Arthur M, Gutmann L: Identification of the L, D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol. 2007, 189 (10): 3927-3931. 10.1128/JB.00084-07.

Pautsch A, Schulz GE: Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol. 1998, 5 (11): 1013-1017. 10.1038/2983.

Choi DS, Yamada H, Mizuno T, Mizushima S: Trimeric structure and localization of the major lipoprotein in the cell surface of Escherichia coli. J Biol Chem. 1986, 261 (19): 8953-8957.

Smith SG, Mahon V, Lambert MA, Fagan RP: A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett. 2007, 273 (1): 1-11. 10.1111/j.1574-6968.2007.00778.x.

Moon DC, Choi CH, Lee JH, Choi CW, Kim HY, Park JS, Kim SI, Lee JC: Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles. J Microbiol. 2012, 50 (1): 155-160. 10.1007/s12275-012-1589-4.

Valeru SP, Shanan S, Alossimi H, Saeed A, Sandstrom G, Abd H: Lack of outer membrane protein A enhances the release of outer membrane vesicles and survival of vibrio cholerae and suppresses viability of Acanthamoeba castellanii. Int J Microbiol. 2014, 2014: 610190-10.1155/2014/610190.

Mahalakshmi S, Sunayana MR, Saisree L, Reddy M: yciM is an essential gene required for regulation of lipopolysaccharide synthesis in Escherichia coli. Mol Microbiol. 2013, 91 (1): 145-157. 10.1111/mmi.12452.

Schwechheimer C, Sullivan CJ, Kuehn MJ: Envelope control of outer membrane vesicle production in gram-negative bacteria. Biochemistry 2013, 52(18):3031–3040

Sriburi R, Jackowski S, Mori K, Brewer JW: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 2004, 167 (1): 35-41. 10.1083/jcb.200406136.

Strauch KL, Johnson K, Beckwith J: Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol. 1989, 171 (5): 2689-2696.

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006, 2: 2006 0008-10.1038/msb4100050.

Cherepanov PP, Wackernagel W: Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995, 158 (1): 9-14. 10.1016/0378-1119(95)00193-A.

Silhavy TJ, Berman ML, Enquist LW, Cold Spring Harbor Laboratory: Experiments With Gene Fusions. 1984, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y

Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK: D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009, 325 (5947): 1552-1555. 10.1126/science.1178123.

Cowles CE, Li Y, Semmelhack MF, Cristea IM, Silhavy TJ: The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. Mol Microbiol. 2011, 79 (5): 1168-1181. 10.1111/j.1365-2958.2011.07539.x.

Schwechheimer C, Rodriguez DL, Kuehn MJ: NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in E.coli. MicrobiologyOpen, In press.,