Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae
Tóm tắt
A total of 28 sequence type (ST) 11 bloodstream infection-causing CRKP strains were collected from Ruijin Hospital in Shanghai, China, and used as recipients in conjugation assays. Transconjugants obtained from conjugation assays were confirmed by
A nonconjugative virulence plasmid was mobilized by the conjugative plasmid belonging to incompatibility group F (IncF) from the hvKP strain into ST11 CRKP strains under low extracellular polysaccharide-producing conditions or by employing intermediate
The nonconjugative virulence plasmid in ST11 CRKP strains is putatively mobilized from hvKP or
Từ khóa
Tài liệu tham khảo
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–75. https://doi.org/10.1093/femsre/fux013.
Yang X, Dong N, Chan EW-C, Zhang R, Chen S. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2020.
Heiden SE, Hübner N-O, Bohnert JA, Heidecke C-D, Kramer A, Balau V, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020;12(1):113. https://doi.org/10.1186/s13073-020-00814-6.
Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3). https://doi.org/10.1128/CMR.00001-19.
Chen Y, Chang H, Lai Y, Pan C, Tsai S, Peng H. Klebsiella pneumoniae CG43 plasmid pLVPK, complete sequence. GenBank AY378100: NCBI Nucleotide; 2020. https://www.ncbi.nlm.nih.gov/nuccore/AY378100
Chen Y-T, Chang H-Y, Lai Y-C, Pan C-C, Tsai S-F, Peng H-L. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:189–98.
Russo TA, Olson R, Fang C-T, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56(9). https://doi.org/10.1128/JCM.00776-18.
Lam MMC, Wyres KL, Wick RR, Judd LM, Fostervold A, Holt KE, et al. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J Antimicrob Chemother. 2019;74(5):1218–22. https://doi.org/10.1093/jac/dkz028.
Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46. https://doi.org/10.1016/S1473-3099(17)30489-9.
Xie Y, Tian L, Li G, Qu H, Sun J, Liang W, et al. Emergence of the third-generation cephalosporin-resistant hypervirulent Klebsiella pneumoniae due to the acquisition of a self-transferable blaDHA-1-carrying plasmid by an ST23 strain. Virulence. 2018:838–44.
Zhang R, Lin D, Chan EW-C, Gu D, Chen G-X, Chen S. Emergence of Carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae strains in China. Antimicrob Agents Chemother. 2016;60(1):709–11. https://doi.org/10.1128/AAC.02173-15.
Turton J, Davies F, Turton J, Perry C, Payne Z, Pike R. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms. 2019;7(9). https://doi.org/10.3390/microorganisms7090326.
Dong N, Lin D, Zhang R, Chan EW-C, Chen S. Carriage of blaKPC-2 by a virulence plasmid in hypervirulent Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73:3317–21.
Huang Y-H, Chou S-H, Liang S-W, Ni C-E, Lin Y-T, Huang Y-W, et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother. 2018;73(8):2039–46. https://doi.org/10.1093/jac/dky164.
Yang X, Wai-Chi Chan E, Zhang R, Chen S. A conjugative plasmid that augments virulence in Klebsiella pneumoniae. Nat Microbiol. 2019;4(12):2039–43. https://doi.org/10.1038/s41564-019-0566-7.
Xie M, Chen K, Ye L, Yang X, Xu Q, Yang C, et al. Conjugation of virulence plasmid in clinical Klebsiella pneumoniae strains through formation of a fusion plasmid. Adv Biosyst. 2020;4:e1900239.
Li R, Cheng J, Dong H, Li L, Liu W, Zhang C, et al. Emergence of a novel conjugative hybrid virulence multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15. Int J Antimicrob Agents. 2020;55:105952.
Qu H, Ou H. Klebsiella pneumoniae subsp. pneumoniae strain RJF293 plasmid pRJF293, complete sequence. BioProject PRJNA307277. NCBI Nucleotide. 2016; https://www.ncbi.nlm.nih.gov/nuccore/?term=PRJNA307277.
Wang X, Xie Y, Li G, Liu J, Li X, Tian L, et al. Whole-genome-sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374. Virulence. 2018;9(1):510–21. https://doi.org/10.1080/21505594.2017.1421894.
Bi D, Jiang X, Sheng Z-K, Ngmenterebo D, Tai C, Wang M, et al. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a “resistance-disarmed” model organism. J Antimicrob Chemother. 2015;70(10):2770–4. https://doi.org/10.1093/jac/dkv204.
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.215087.116.
Qu J, Ou H. Klebsiella pneumoniae subsp. pneumoniae strain:RJBSI76 genome sequencing. BioProject PRJNA681750. NCBI Nucleotide. 2021; https://www.ncbi.nlm.nih.gov/nuccore/?term=PRJNA681750.
Qu J, Ou H. Klebsiella pneumoniae subsp. pneumoniae strain:RJBSI76-pV genome sequencing. BioProject PRJNA682095. NCBI Nucleotide. 2021; https://www.ncbi.nlm.nih.gov/nuccore/?term=PRJNA682095.
Qu J, Ou H. Escherichia coli strain:J53-p1-pV-hybrid-1 genome sequencing. BioProject PRJNA692573. NCBI Nucleotide. 2021; https://www.ncbi.nlm.nih.gov/nuccore/?term=PRJNA692573.
Qu J, Ou H. Escherichia coli strain:XL10-pF-pV-hybrid-1 genome sequencing. BioProject PRJNA692574. NCBI Nucleotide. 2021; https://www.ncbi.nlm.nih.gov/nuccore/1968731931.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–903. https://doi.org/10.1128/AAC.02412-14.
Lam MMC, Wick RR, Wyres KL, Holt KE. Genomic surveillance framework and global population structure for Klebsiella pneumoniae. bioRxiv. 2020; 2020.12.14.422303.
Li J, Tai C, Deng Z, Zhong W, He Y, Ou H-Y. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief Bioinform. 2018;19:566–74.
Li X, Xie Y, Liu M, Tai C, Sun J, Deng Z, et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018;46:W229–34.
Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. https://doi.org/10.1186/1471-2164-12-402.
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. https://doi.org/10.1093/bioinformatics/btr039.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server):W202–8. https://doi.org/10.1093/nar/gkp335.
Palacios M, Broberg CA, Walker KA, Miller VL. A serendipitous mutation reveals the severe virulence defect of a Klebsiella pneumoniae fepB mutant. mSphere. 2017;2.
Li L, Stoeckert CJJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89. https://doi.org/10.1101/gr.1224503.
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–9. https://doi.org/10.1093/nar/gkz239.
Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15(4):e1008114. https://doi.org/10.1371/journal.pgen.1008114.
Walker KA, Miner TA, Palacios M, Trzilova D, Frederick DR, Broberg CA, et al. A Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity. MBio. 2019;10(2). https://doi.org/10.1128/mBio.00089-19.
Walker KA, Treat LP, Sepúlveda VE, Miller VL. The small protein RmpD drives hypermucoviscosity in Klebsiella pneumoniae. MBio. 2020;11(5). https://doi.org/10.1128/mBio.01750-20.
Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74(3):434–52. https://doi.org/10.1128/MMBR.00020-10.
Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett. 2003;224(1):1–15. https://doi.org/10.1016/S0378-1097(03)00430-0.
Furuya N, Nisioka T, Komano T. Nucleotide sequence and functions of the oriT operon in IncI1 plasmid R64. J Bacteriol. 1991;173(7):2231–7. https://doi.org/10.1128/jb.173.7.2231-2237.1991.
O’Connor MB, Kilbane JJ, Malamy MH. Site-specific and illegitimate recombination in the oriV1 region of the F factor. DNA sequences involved in recombination and resolution. J Mol Biol. 1986;189:85–102.
Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci. 2019;1457:61–91.
Bi D, Zheng J, Li J-J, Sheng Z-K, Zhu X, Ou H-Y, et al. In silico typing and comparative genomic analysis of IncFIIK plasmids and insights into the evolution of replicons, plasmid backbones, and resistance determinant profiles. Antimicrob Agents Chemother. 2018;62(10). https://doi.org/10.1128/AAC.00764-18.
Shu L, Dong N, Lu J, Zheng Z, Hu J, Zeng W, et al. Emergence of OXA-232 carbapenemase-producing Klebsiella pneumoniae that carries a pLVPK-Like virulence plasmid among elderly patients in China. Antimicrob Agents Chemother. 2019;63(3). https://doi.org/10.1128/AAC.02246-18.
Wong MH-Y, Chan EW-C, Chen S. IS26-mediated formation of a virulence and resistance plasmid in Salmonella enteritidis. J Antimicrob Chemother. 2017;72(10):2750–4. https://doi.org/10.1093/jac/dkx238.
Bouet J-Y, Bouvier M, Lane D. Concerted action of plasmid maintenance functions: partition complexes create a requirement for dimer resolution. Mol Microbiol. 2006;62(5):1447–59. https://doi.org/10.1111/j.1365-2958.2006.05454.x.
Liu G, Bogaj K, Bortolaia V, Olsen JE, Thomsen LE. Antibiotic-induced, increased conjugative transfer is common to diverse naturally occurring ESBL plasmids in Escherichia coli. Front Microbiol. 2019;10:2119. https://doi.org/10.3389/fmicb.2019.02119.
Kim S, Yun Z, Ha U-H, Lee S, Park H, Kwon EE, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ. 2014;468–469:813–20.
Anthony KG, Sherburne C, Sherburne R, Frost LS. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol. 1994;13(6):939–53. https://doi.org/10.1111/j.1365-2958.1994.tb00486.x.
Pérez-Mendoza D, de la Cruz F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics. 2009;10(1):71. https://doi.org/10.1186/1471-2164-10-71.
Fang C-T, Chuang Y-P, Shun C-T, Chang S-C, Wang J-T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med. 2004;199(5):697–705. https://doi.org/10.1084/jem.20030857.
The NCBI. Nucleotide/Protein database. National Center for. Biotechnol Inform (NCBI). https://www.ncbi.nlm.nih.gov/nucleotide/. Accessed 3 Mar 2021.