Intermittent hypoxia in eggs ofAmbystoma maculatum: embryonic development and egg capsule conductance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adolph, E. F. (1979). Development of dependence on oxygen in embryo salamanders. Am. J. Physiol.236,R282-R291.
Andrews, R. M. (2002). Low oxygen: a constraint on the evolution of viviparity in reptiles. Physiol. Biochem. Zool.75,145-154.
Bachmann, M. D., Carlton, R. G., Burkholder, J. M. and Wetzel,R. G. (1986). Symbiosis between salamander eggs and green algae: microelectrode measurements inside eggs demonstrate effect of photosynthesis on oxygen concentration. Can. J. Zool.64,1586-1588.
Barnhart, M. C. (1995). An improved gas-stripping column for deoxygenating water. J. North Am. Benthol. Soc.14,347-350.
Booth, D. T. (1995). Oxygen availability and embryonic development in sand snail (Polinices sordidus) egg masses. J. Exp. Biol.198,241-247.
Bradford, D. F. and Seymour, R. S. (1988). Influence of environmental PO2 on embryonic oxygen consumption, rate of development, and hatching in the frog Pseudophryne bibroni.Physiol. Zool.61,475-482.
Burggren, W. (1985). Gas exchange, metabolism,and `ventilation' in gelatinous frog egg masses. Physiol. Zool.58,503-514.
Burggren, W. (1998). Studying physiological development: past, present, and future. Biol. Bull. National Taiwan Normal University33,71-84.
Chaffee, C. and Strathmann, R. R. (1984). Constraints on egg masses. I. Retarded development within thick egg masses. J. Exp. Mar. Biol. Ecol.84, 73-83.
Chan, T. and Burggren, W. (2005). Hypoxic incubation creates differential morphological effects during specific developmental critical windows in the embryo of the chicken (Gallus gallus). Respir. Physiol. Neurobiol.145,251-263.
Cohen, C. S. and Strathmann, R. R. (1996). Embryos at the edge of tolerance: effects of environment and structure of egg masses on supply of oxygen to embryos.Biol. Bull.190, 8-15.
Detwiler, S. R. and Copenhaver, W. M. (1940). The developmental behavior of Amblystoma eggs subjected to atmospheres of low oxygen and high carbon dioxide. Am. J. Anat.66,393-410.
Dzialowski, E. M., von Plettenberg, D., Elmonoufy, N. A. and Burggren, W. W. (2002). Chronic hypoxia alters the physiological and morphological trajectories of developing chicken embryos. Comp. Biochem. Physiol.131A,713-724.
Gilbert, P. W. (1942). Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes. Ecology23,215-227.
Gilbert, P. W. (1944). The alga–egg relationship in Ambystoma maculatum, a case of symbiosis. Ecology25,366-369.
Ginot, V. and Herve, J. (1994). Estimating the parameters of dissolved oxygen dynamics in shallow ponds. Ecol. Modell.73,169-187.
Harrison, R. G. (1969). Organization and Development of the Embryo. New Haven, Connecticut: Yale University Press.
Hutchison, V. H. and Hammen, C. S. (1958). Oxygen utilization in the symbiosis of embryos of the salamander, Ambystoma maculatum and the alga, Oophila amblystomatis.Biol. Bull.115,483-489.
Khozhai, L. I., Otellin, V. A. and Kostkin, V. B.(2002). Formation of neocortex in rats after prenatal hypoxia. Morfologiia122,34-38.
Mills, N. E. (1997). Effects of hypoxia on embryonic development and hatching in two Ambystoma and two Rana species. Masters thesis, Southwest Missouri State University, USA.
Mills, N. E. and Barnhart, M. C. (1999). Effects of hypoxia on embryonic development in two Ambystoma and two Rana species. Physiol. Biochem. Zool.72,179-188.
Mills, N. E., Barnhart, M. C. and Semlitsch, R. D.(2001). Effects of hypoxia on egg capsule conductance in Ambystoma (Class Amphibia, Order Caudata). J. Exp. Biol.204,3747-3753.
Petranka, J. W., Sih, A., Kats, L. B. and Holomuzki, J. R.(1987). Stream drift, size-specific predation and the evolution of ovum size in an amphibian. Oecologia71,624-630.
Pinder, A. W. and Friet, S. C. (1994). Oxygen transport in egg masses of the amphibians Rana sylvatica and Ambystoma maculatum: convection, diffusion, and oxygen production by algae. J. Exp. Biol.197, 17-30.
Rattner, B. A. and Ramm, G. M. (1975). Effects of hypoxia on early pregnancy and embryonic development in the mouse. Aviat. Space Environ. Med.46,911-915.
Salthe, S. N. (1965). Increase in volume of the perivitelline chamber during development of Rana pipiens Schreber. Physiol. Zool.38,80-98.
Seymour, R. S. (1994). Oxygen diffusion through the jelly capsules of amphibian eggs. Isr. J. Zool.40,493-506.
Seymour, R. S. (1995). Oxygen uptake by embryos in gelatinous egg masses of Rana sylvatica: the roles of diffusion and convection. Copeia1995,626-635.
Seymour, R. S. and Bradford, D. F. (1987). Gas exchange through the jelly capsule of the terrestrial eggs of the frog, Pseudophryne bibroni.J. Comp. Physiol. B157,477-481.
Seymour, R. S. and Roberts, J. D. (1991). Embryonic respiration and oxygen distribution in foamy and nonfoamy egg masses of the frog Limnodynastes tasmaniensis.Physiol. Zool.64,1322-1340.
Seymour, R. S. and White, C. R. (2006). Models for embryonic respiration. In Comparative Developmental Physiology (ed. S. J. Warburton, W. W. Burggren, B. Pelster, C. L. Reiber and J. Spicer), pp. 41-57. Oxford, New York, Auckland: Oxford University Press.
Seymour, R. S., Geiser, F. and Bradford, D. F.(1991). Gas conductance of the jelly capsule of terrestrial frog eggs correlates with embryonic stage, not metabolic demand or ambient PO2. Physiol. Zool.64,673-687.
Shang, E. H. H. and Wu, R. S. S. (2004). Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol.38,4763-4767.
Sih, A. and Moore, R. D. (1993). Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am. Nat.142,947-960.
Smith, C. K. (1990). Effects of variation in body size on intra-specific competition among larval salamanders. Ecology71,1777-1788.
Warburton, S. J., Hastings, D. and Wang, T.(1995). Responses to chronic hypoxia in embryonic alligators. J. Exp. Zool.273,44-50.