The Role of Metabolites in Bioequivalence
Tóm tắt
The role of metabolites in bioequivalence studies has been a contentious issue for many years. Many papers have published recommendations for the use of metabolite data based on anecdotal evidence from the results of bioequivalence studies. Such anecdotal evidence has validity, but the arguments lack weight because the “correct” answers are always unknown. A more promising area of exploration is recommendations based on simulated bioequivalence studies for which the “correct” answers are known, given the assumptions. A review of the literature, however, reveals scant evidence of attempts to apply to real data the pharmacokinetic principles on which the recommendations from simulated studies relied. We therefore applied those principles (based on estimates of intrinsic clearance after oral administration of the parent drug) to four bioequivalence studies from our archives, in which the parent drug and at least one metabolite were monitored. In each case, the outcome is discussed in the context of the complexity of the metabolic processes that impact on the parent drug and the metabolite(s) during the first passage from the intestinal lumen to the systemic circulation. Our observation is that no simple generalization can be made such that each drug/metabolite combination must be examined individually. Our recommendation, however, is that in the interests of safety, bioequivalence decision-making should be based on the parent drug whenever possible.
Tài liệu tham khảo
K. Midha. and J. Hubbard. Aims and Consequences of Bioequivalence Studies. In H. Blume and K. Midha (eds.), Bio-International 2: Bioavailability, Bioequivalence and Pharmacokinetic Studies,Medpharm Scientific Publishers, Stuttgart, 1995, pp. 29–34.
M. L. Chen and A. J. Jackson. The role of metabolites in bioequivalency assessment. I. Linear pharmacokinetics without firstpass effect. Pharm. Res. 8:25–32 (1991).
M.-L. Chen and A. J. Jackson. The role of metabolites in bioequivalency assessment. II. drugs with linear pharmacokinetics and first-pass effect. Pharm. Res. 12:700–708 (1995).
4. G. Tucker, A. Rostami, and P. Jackson. Metabolite measurement in bioequivalence studies: Theoretical considerations. In K. K. Midha and H. H. Blume (eds), Bio-International: Bioavailability, Bioequivalence and Pharmacokinetics,Medpharm Scientific Publishers, Stuttgart, 1993, pp. 163–170.
S. E. Rosenbaum. and J. Lam. Bioequivalence parameters of parent drug and its first-pass metabolite: comparative sensitivity to sources of pharmacokinetic variability. Drug Dev. Indust. Pharm. 23:337–344 (1997).
A. J. Jackson. The role of metabolites in bioequivalency assessment. III. Highly variable drugs with linear kinetics and first-pass effect. Pharm. Res. 17:1432–1436 (2000).
US Department of Health and Human Services. Food and Drug Administration, Federal Food, Drug and Cosmetic Act, as Amended and Related Laws in 21 USC. 1986, pp. 66.
M. L. Chen, L. Lesko, and R. L. Williams. Measures of exposure versus measures of rate and extent of absorption. Clin. Pharmacokinet. 40:565–572 (2001).
D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15:657–680 (1987).
U.S. Department of Health and Human Services. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Draft Guidance for Industry. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products-General Considerations. (2002).
W. M. Glazer, L. T. Friedhoff, S. R. Marder, and W. A. Brown. The determination of the steady-state pharmacokinetic profile of fluphenazine decanoate by gas chromatography/mass spectrometry detection. Schizophr. Res. 8:111–117 (1992).
T. Zimmermann, M. Wehling, and H. U. Schulz. Evaluation of the relative bioavailability and the pharmacokinetics of chloral hydrate and its metabolites. Arzneimittel Forschung Drug Res. 4vn8:5–12 (1998).
H. J. Mascher, C. Kikuta, A. Millendorfer, H. Schiel, and G. Ludwig. Pharmacokinetics and bioequivalence of the main metabolites of selegiline: Desmethylselegiline, methamphetamine and amphetamine after oral administration of selegiline. Int. J. Clin. Pharm. Ther. 35:9–13 (1997).
E. Heinonen, M. Anttila, and A. Lammintausta. Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin. Pharm. Therap. 56:742–749 (1994).
H. R. Kwon, P. Green, and S. H. Curry. Pharmacokinetics of nitroglycerin and its metabolites after administration of sustained-release tablets. Biopharm. Drug Dispos. 13:141–152 (1992).
J. X. Sun, A. J. Piraino, J. M. Morgan, J. C. Joshi, A. Cipriano, K. Chan, and E. Redalieu. Comparative pharmacokinetics and bioavailability of nitroglycerin and its metabolites from transdermnitro, nitrodisc, and nitro-dur II systems using a stable-isotope technique. J. Clin. Pharm. 35:390–397 (1995).
B. Keller-Stanislawski, J. P. Marschner, and N. Rietbrock. Pharmacokinetics of low-dose isosorbide dinitrate and metabolites after buccal or oral administration. Arzneimittelforschung 42:17–20 (1992).
H. H. Blume and K. K. Midha. Bio-International '92, Conference on Bioavailability, Bioequivalence and Pharmacokinetic Studies. Pharm. Res. 10:1806–1811 (1993).
E. Ezan, T. Ardouin, B. D. Landes, B. Flouvat, T. Hanslik, J. M. Legeai, and J. M. Grognet. Bioequivalence study of alphadihydroergocryptine: utility of metabolite evaluation. Int. J. Clin. Pharmacol. Ther. 34:32–37 (1996).
K. K. Midha, J. W. Hubbard, G. McKay, E. M. Hawes, and D. Hsia. The role of metabolites in a bioequivalence study 1: loxapine, 7-hydroxyloxapine and 8-hydroxyloxapine. Int. J. Clin. Pharmacol. Ther. Toxicol. 31:177–183 (1993).
H. Vergin, G. Mahr, R. Metz, A. Eichinger, V. Nitsche, and H. Martens. Analysis of metabolites-a new approach to bioequivalence studies of spironolactone formulations. Int. J. Clin. Pharmacol. Ther. 35:334–340 (1997).
M. Gibaldi, R. N. Boys, and S. Feldman. Influence of first pass effect on availability of drugs on oral administration. J. Pharm. Sci. 60:1338–1340 (1971).
D. Perrier and M. Gibaldi. Clearance and biologic half-lives as indices of intrinsic hepatic metabolism. J. Pharmacol. Exp. Ther. 191:17–24 (1974).
G. R. Wilkinson and D. G. Shand. A physiologic approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18:377–390 (1975).
W. A. Colburn and M. Gibaldi. Pharmacokinetic model of presystemic metabolism. Drug Metab. Disp. 6:193–196 (1978).
K. S. Pang. and J. R Gillette. A theoretical examination of the effects of gut wall metabolism, hepatic elimination, and enterohepatic recycling on estimates of bioavailability and hepatic blood flow. J. Pharmacokinet. Biopharm. 6:355–367 (1978).
I. Walter-Sack, J. X. de-Vries, C. Kreiner, A. Ittensohn, G. Stenzhorn, A. Voss, and E. Weber. Bioequivalence of allopurinol preparations: to be assessed by the parent drug or the active metabolite? Clin. Investig. 71:240–246 (1993).
L. Endrenyi and W. Yan. Variation of Cmax and Cmax/AUC in investigations of bioequivalence. Int. J. Clin. Pharmacol. Ther. Toxicol. 31:184–189 (1993).
L. Endrenyi, S. Fritsch, and W. Yan. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int. J. Clin. Pharmacol. Ther. Toxicol. 29:394–399 (1991).
M. Weiss. A general model of metabolite kinetics following intravenous and oral administration of the parent drug. Biopharm. Drug Dispos. 9:159–176 (1988).
K. K. Midha, G. McKay, M. J. Rawson, E. D. Korchinski, and J. W. Hubbard. Effects of food on the pharmacokinetics of methylphenidate. Pharm. Res. 18:1185–1189 (2001).
H. Luo, E. M. Hawes, G. McKay, E. D. Korchinski, and K. K. Midha. The quaternary ammonium-linked glucuronide of doxepin: a major metabolite in depressed patients treated with doxepin. Drug Metab. Dispos. 19:722–724 (1991).
Y. Z. Shu, J. W. Hubbard, J. K. Cooper, G. McKay, E. D. Korchinski, R. Kumar, and K. K. Midha. The identification of urinary metabolites of doxepin in patients. Drug Metab. Dispos. 18:735–741 (1990).
Y. Z. Shu, J. W. Hubbard, G. McKay, and K. K. Midha. Identification of phenolic doxepin glucuronides from patient urine and rat bile. Drug Metab. Dispos. 18:1096–1099 (1990).
R. D. Faulkner, W. M. Pitts, C. S. Lee, W. A. Lewis, and W. E. Fann. Multiple-dose doxepin kinetics in depressed patients. Clin. Pharmacol. Ther. 34:509–515 (1983).
D. Green. Clinical importance of doxepin plasma levels. J. Clin. Psychiatry 39:481–482 (1978).
J. H. Yan, J. W. Hubbard, G. McKay, E. D. Korchinski, and K. K. Midha. Absolute bioavailability and stereoselective pharmacokinetics of doxepin. Xenobiotica 32:615–623 (2002).
K. K. Midha, J. W. Hubbard, M. Rawson, and R. Schwede. The impact of stereoisomerism in a bioequivalence study on two formulations of doxepin. Eur. J. Pharm. Sci. 4:133–138 (1996).
C. Nordin and L. Bertilsson. Active hydroxymetabolites of antidepressants: Emphasis on E-10-hydroxy-nortriptyline. Clin. Pharmacol. 28:26–40 (1995).
M. Dahl-Puustinen, T. Perry, E. Dumont, C. von Bahr, C. Nordin, and L. Bertilson. Stereoselective disposition of racemic E-10-hydroxynortriptyline in human beings. Clin. Pharmacol. Ther. 45:650–656 (1989).
M. Dahl-Puustinen, E. Dumont, and L. Bertilsson. Glucuronidation of E-10-hydroxynortriptyline in human liver, kidney and intestine. Drug Metab. Dispos. 17:433–436 (1989).
K. K. Midha, J. W. Hubbard, G. Mckay, M. Rawson, and R. Schwede. Stereoselectivity in bioequivalence studies of nortriptyline. J. Pharm. Sci. 84:1265–1266 (1995).
G. Alvan, O. Borga, M. Lind, L. Palmer, and B. Siwers. First pass hydroxylation of nortriptyline: concentrations of parent drug and major metabolites in plasma. Eur. J. Clin. Pharmacol. 11:219–224 (1977).
J. Coupet. C. CE Rauh, V. Szues-Meyers, and L. Yunger. 2-Chloro-11-(1-piperazinyl)dibenz[b,f][1,4]oxazepine (amoxapine), an antidepressant with antipsychotic properties-a possible role for 7-hydroxyamoxapine. Biochem. Pharmacol. 28:2154-2155 (1979).
J. Coupet, V. Szucs, and E. Greenblat. The effects of 2-chloro-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]oxazepin (Loxapine) and its derivatives on the dopamine-sensitive adenylate cyclase of rat striatal homogenates. Brain Res. 116:177–180 (1976).
J. Coupet and C. Rauh. 3H-Spiroperidol binding to dopamine receptors in rat striatal membranes: Influence of loxapine and its hydroxylated metabolites. Eur. J. Pharmacol. 55:215–218 (1979).
K. K. Midha, J. W. Hubbard, G. McKay, M. J. Rawson, and D. Hsia. The role of metabolites in a bioequivalence study II: amoxapine, 7-hydroxyamoxapine, and 8-hydroxyamoxapine. Int. J. Clin. Pharm. Therap. 37:428–438 (1999).