Non-uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree

Journal of Statistical Physics - Tập 147 - Trang 779-794 - 2012
Y. K. Eshkabilov1, F. H. Haydarov1, U. A. Rozikov2
1National University of Uzbekistan, Tashkent, Uzbekistan
2Institute of Mathematics, Tashkent, Uzbekistan

Tóm tắt

In this paper we construct several models with nearest-neighbor interactions and with the set [0,1] of spin values, on a Cayley tree of order k≥2. We prove that each of the constructed model has at least two translational-invariant Gibbs measures.

Tài liệu tham khảo

Bleher, P.M., Ganikhodjaev, N.N.: On pure phases of the Ising model on the Bethe lattice. Theory Probab. Appl. 35, 216–227 (1990) Bleher, P.M., Ruiz, J., Zagrebnov, V.A.: On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Stat. Phys. 79, 473–482 (1995) Eshkabilov, Yu.Kh., Haydarov, F.H., Rozikov, U.A.: Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. arXiv:1202.1722v1 [math.FA] Ganikhodjaev, N.N.: On pure phases of the ferromagnet Potts with three states on the Bethe lattice of order two. Theor. Math. Phys. 85, 163–175 (1990) Ganikhodjaev, N.N., Rozikov, U.A.: Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree. Theor. Math. Phys. 111, 480–486 (1997) Ganikhodjaev, N.N., Rozikov, U.A.: The Potts model with countable set of spin values on a Cayley tree. Lett. Math. Phys. 75, 99–109 (2006) Ganikhodjaev, N.N., Rozikov, U.A.: On Ising model with four competing interactions on Cayley tree. Math. Phys. Anal. Geom. 12, 141–156 (2009) Preston, C.: Gibbs States on Countable Sets. Cambridge University Press, London (1974) Rozikov, U.A.: Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions. Theor. Math. Phys. 112, 929–933 (1997) Rozikov, U.A., Eshkabilov, Yu.Kh.: On models with uncountable set of spin values on a Cayley tree: integral equations. Math. Phys. Anal. Geom. 13, 275–286 (2010) Sinai, Ya.G.: Theory of Phase Transitions: Rigorous Results. Pergamon, Oxford (1982) Spitzer, F.: Markov random fields on an infinite tree. Ann. Probab. 3, 387–398 (1975) Suhov, Y.M., Rozikov, U.A.: A hard-core model on a Cayley tree: an example of a loss network. Queueing Syst. 46, 197–212 (2004) Zachary, S.: Countable state space Markov random fields and Markov chains on trees. Ann. Probab. 11, 894–903 (1983)