The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data

Springer Science and Business Media LLC - Tập 6 - Trang 202-213 - 2007
Hermann Ackermann1, Klaus Mathiak2, Axel Riecker3
1Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
2Department of Psychiatry and Psychotherapy, Medical Center, RWTH Aachen University, Germany
3Department of Neurology, University of Ulm, Germany

Tóm tắt

A classical tenet of clinical neurology proposes that cerebellar disorders may give rise to speech motor disorders (ataxic dysarthria), but spare perceptual and cognitive aspects of verbal communication. During the past two decades, however, a variety of higher-order deficits of speech production, e.g., more or less exclusive agrammatism, amnesic or transcortical motor aphasia, have been noted in patients with vascular cerebellar lesions, and transient mutism following resection of posterior fossa tumors in children may develop into similar constellations. Perfusion studies provided evidence for cerebellocerebral diaschisis as a possible pathomechanism in these instances. Tight functional connectivity between the languagedominant frontal lobe and the contralateral cerebellar hemisphere represents a prerequisite of such long-distance effects. Recent functional imaging data point at a contribution of the right cerebellar hemisphere, concomitant with languagedominant dorsolateral and medial frontal areas, to the temporal organization of a prearticulatory verbal code (‘inner speech’), in terms of the sequencing of syllable strings at a speaker’s habitual speech rate. Besides motor control, this network also appears to be engaged in executive functions, e.g., subvocal rehearsal mechanisms of verbal working memory, and seems to be recruited during distinct speech perception tasks. Taken together, thus, a prearticulatory verbal code bound to reciprocal right cerebellar/left frontal interactions might represent a common platform for a variety of cerebellar engagements in cognitive functions. The distinct computational operation provided by cerebellar structures within this framework appears to be the concatenation of syllable strings into coarticulated sequences.

Tài liệu tham khảo

Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia, PA: WB Saunders; 1975. Duffy JR. Motor speech disorders: Substrates, differential diagnosis, and management. 2nd ed. St Louis, MO: Elsevier Mosby; 2005. Kluin KJ, Gilman S, Markel DS, Koeppe RA, Rosenthal G, Junck L. Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings. Ann Neurol. 1988;23:547–54. Ackermann H, Ziegler W. Cerebellar voice tremor: An acoustic analysis. J Neurol Neurosurg Psychiat. 1991;54: 74–6. Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunctions. Ann Otol Rhinol Laryngol. 1994;103:98–104. Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neuroling. 2000;13:95–116. Hertrich I, Ackermann H. Acoustic analysis of durational speech parameters in neurological dysarthrias. In: Lebrun Y, editor. From the brain to the mouth: Acquired dysarthria and dysfluency in adults. (Neuropsychology and Cognition, Volume 12). Dordrecht: Kluwer Academic Publishers; 1997. pp 11–47. Ackermann H, Hertrich I. Speech rate and rhythm in cerebellar dysarthria: An acoustic analysis of syllabic timing. Folia Phoniatr Logop. 1994;46:70–8. Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phon Logop. 1997;49:63–82. Ackermann H, Hertrich I, Scharf G. Kinematic analysis of lower lip movements in ataxic dysarthria. J Speech Hear Res. 1995;38:1252–9. Ackermann H, Hertrich I, Daum I, Scharf G, Spieker S. Kinematic analysis of articulatory movements in central motor disorders. Mov Disord. 1997;12:1019–27. Ackermann H, Hertrich I. Voice onset time in ataxic dysarthria. Brain Lang. 1997;56:321–33. Ackermann H, Gräber S, Hertrich I, Daum I. Phonemic vowel length contrasts in cerebellar disorders. Brain Lang. 1999;67:95–109. Hertrich I, Ackermann H. Temporal and spectral aspects of coarticulation in ataxic dysarthria: An acoustic analysis. J Speech Lang Hear Res. 1999;42:367–81. Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7. Richter S, Schoch B, Ozimek A, Gorissen B, Hein-Kropp C, Kaiser O, et al. Incidence of dysarthria in children with cerebellar tumors: A prospective study. Brain Lang. 2005;92:153–67. Van Calenbergh F, van de Laar A, Plets C, Goffin J, Casaer P. Transient cerebellar mutism after posterior fossa surgery in children. Neurosurgery. 1995;37:894–8. Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: A review and a new hypothesis. Brain Lang. 2001;79:580–600. Van Dongen HR, Catsman-Berrevoets CE, van Mourik M. The syndrome of ‘cerebellar’ mutism and subsequent dysarthria. Neurology. 1994;44:2040–6. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: Evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61. Ozimek A, Richter S, Hein-Kropp C, Schoch B, Gorißen B, Kaiser O, et al. Cerebellar mutism: Report of four cases. J Neurol. 2004;251:963–72. Ackermann H, Hertrich I, Ziegler W, Bitzer M, Bien S. Acquired dysfluencies following infarction of the left mesiofrontal cortex. Aphasiology. 1996;10:409–17. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: A case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50. Zettin M, Cappa SF, D’Amico A, Rago R, Perino C, Perani D, et al. Agrammatic speech production after a right cerebellar haemorrhage. Neurocase. 1997;3:375–80. Molinari M, Leggio MG, Silveri MC. Verbal fluency and agrammatism. In: Schmahmann JD, editor. The cerebellum and cognition. (International Review of Neurobiology, Volume 41). San Diego, CA: Academic Press; 1997. pp 325–39. Hassid EI. A case of language dysfunction associated with cerebellar infarction. J Neurol Rehab. 1995;9:157–60. Marien P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut BA, et al. Cerebellar induced aphasia: Case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci. 1996;144: 34–43. Marien P, Engelborghs S, Pickut BA, De Deyn PP. Aphasia following cerebellar damage: Fact or fallacy? J Neuroling. 2000;13:145–71. Gasparini M, Di Piero V, Ciccarelli O, Cacioppo MM, Pantano P, Lenzi GL. Linguistic impairment after right cerebellar stroke: A case report. Eur J Neurol. 1999;6:353–6. Ackermann H, Daum I. Neuropsychological deficits in cerebellar syndromes. In: Bédard M-A, Agid Y, Chouinard S, Fahn S, Korczyn AD, Lespérance P, editors. Mental and behavioral dysfunction in movement disorders. Totowa, NJ: Humana Press; 2003. pp 147–56. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12:l-47. Paulesu E, Frith CD, Frackowiak RSJ. The neural correlates of the verbal component of working memory. Nature. 1993;362:342–345. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum: Evidence from a patient with a right cerebellar lesion. Brain. 1998;121:2175–87. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage: A single case study. Brain. 1992; 115:155–78. Helmuth LL, Ivry RB, Shimizu N. Preserved performance by cerebellar patients on tests of word generation, discrimination learning, and attention. Learn Mem. 1997;3:456–74. Richter S, Dimitrova A, Hein-Kropp C, Wilhelm H, Gizewski E, Timmann D. Cerebellar agenesis II: Motor and language functions. Neurocase. 2005;11:103–13. Ackermann H, Wildgruber D, Daum I, Grodd W. Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neurosci Lett. 1998;247:187–90. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70. Fiez JA, Raichle ME. Linguistic processing. In: Schmahmann JD, editor. The cerebellum and cognition. (International Review of Neurobiology, Volume 41). San Diego, CA: Academic Press; 1997. pp 233–54. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92: 101–44. Riecker A, Mathiak K, Wildgruber D, Erb M, Grodd W, Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64: 700–06. Riecker A, Kassubek J, Gröschel K, Grodd W, Ackermann H. The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. Neurolmage. 2006;29:46–53. Ackermann H, Hertrich I, Hehr T. Oral diadochokinesis in neurological dysarthrias. Folia Phoniatr Logop. 1995;47:15–23. Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H. Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: A fMRI study. Neurolmage. 2003;18:731–9. Levelt WJM. Speaking: From intention to articulation. Cambridge, MA: MIT Press; 1989. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport. 2000;11:1997–2000. Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: Effects of syllable repetition rate evaluated by fMRI. Neurolmage. 2001;13:101–9. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52. Ackermann H, Gräber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and non-speech domain. Brain Lang. 1999;67: 228–41. Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga MS, editor. The new cognitive neurosciences. 2nd ed. Cambridge, MA: MIT Press; 2000. pp 999–1011. Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60:323–31. Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: A functional magnetic resonance imaging study. J Cogn Neurosci. 2002;14: 902–12. Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: Functional magnetic resonance imaging of nonverbal auditory memory. Neurolmage. 2004;21:154–162. Levelt WJM, Roelofs A, Meyer AS. A theory of lexical access in speech production. Behav Brain Sci. 1999;22:1–75. Ackermann H, Mathiak K, Ivry RB. Temporal organization of ‘internal speech’ as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3: 14–22.