Inhibition in the amygdala anxiety circuitry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Krueger-Burg, D., Papadopoulos, T. & Brose, N. Organizers of inhibitory synapses come of age. Curr. Opin. Neurobiol. 45, 66–77 (2017).
Ko, J., Choii, G. & Um, J. W. The balancing act of GABAergic synapse organizers. Trends Mol. Med. 21, 256–268 (2015).
Rudolph, U. & Möhler, H. GABAA receptor subtypes: therapeutic potential in down syndrome, affective disorders, schizophrenia, and autism. Ann. Rev. Pharmacol. Toxicol. 54, 483–507 (2014).
Prager, E. M., Bergstrom, H. C., Wynn, G. H. & Braga, M. F. The basolateral amygdala gamma-aminobutyric acidergic system in health and disease. J. Neurosci. Res. 94, 548–567 (2016).
Benham, R. S., Engin, E. & Rudolph, U. Diversity of neuronal inhibition: a path to novel treatments for neuropsychiatric disorders. JAMA Psychiatry 71, 91–93 (2014).
Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).
Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).
Bandelow, B., Michaelis, S. & Wedekind, D. Treatment of anxiety disorders. Dialog. Clin. Neurosci. 19, 93–107 (2017).
Cryan, J. F. & Sweeney, F. F. The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 164, 1129–1161 (2011).
Forster G. L., Novick A. M., Scholl J. L., Watt M. J. The role of the amygdala in anxiety disorders in The Amygdala - A Discrete Multitasking Manager (ed. Ferry B) Ch. 3 (InTech, Rijeka, 2012)
LeDoux, J., Iwata, J., Cicchetti, P. & Reis, D. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).
Sah, P., Faber, E. S., Lopez De Armentia, M. & Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–834 (2003).
Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).
Krabbe S., Gründemann J., Lüthi A. Amygdala inhibitory circuits regulate associative fear conditioning. Biol. Psychiatry doi: 10.1016/j.biopsych.2017.10.006. (2017).
Gafford, G. M. & Ressler, K. J. Mouse models of fear-related disorders: cell-type-specific manipulations in amygdala. Neurosci 321, 108–120 (2016).
Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96 (2017).
Nuss, P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 11, 165–175 (2015).
Gilpin, N. W., Herman, M. A. & Roberto, M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol. Psychiatry 77, 859–869 (2015).
Spampanato, J., Polepalli, J. & Sah, P. Interneurons in the basolateral amygdala. Neuropharmacol 60, 765–773 (2011).
Lee, S. C., Amir, A., Haufler, D. & Pare, D. Differential recruitment of competing valence-related amygdala networks during anxiety. Neuron 96, 81–88 (2017).
Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).
Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675 (2015).
Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479. (2017).
Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).
Kim, J., Pignatelli, M., Xu, S., Itohara, S. & Tonegawa, S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636–1646 (2016).
Veres, J. M., Nagy, G. A. & Hájos, N. Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks. eLife 6, e20721 (2017).
Veres, J. M., Nagy, G. A., Vereczki, V. K., Andrási, T. & Hájos, N. Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala. J. Neurosci. 34, 16194–16206 (2014).
Woodruff, A. R. & Sah, P. Networks of parvalbumin-positive interneurons in the basolateral amygdala. J. Neurosci. 27, 553–563 (2007).
Smith, Y., Paré, J.-F. & Paré, D. Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. J. Comp. Neurol. 416, 496–508 (2000).
Lucas, E. K., Jegarl, A. M., Morishita, H. & Clem, R. L. Multimodal and site-specific plasticity of amygdala parvalbumin interneurons after fear learning. Neuron 91, 629–643 (2016).
Muller, J. F., Mascagni, F. & McDonald, A. J. Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J. Neurosci. 25, 7366–7376 (2005).
Hale, M. W. et al. Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34, 1285–1293 (2010).
Lukkes, J. L., Burke, A. R., Zelin, N. S., Hale, M. W. & Lowry, C. A. Post-weaning social isolation attenuates c-Fos expression in GABAergic interneurons in the basolateral amygdala of adult female rats. Physiol. Behav. 107, 719–725 (2012).
Urakawa, S. et al. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats. BMC Neurosci. 14, 13 (2013).
Muller, J. F., Mascagni, F. & McDonald, A. J. Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J. Comp. Neurol. 505, 314–335 (2007).
Bocchio, M. et al. Increased serotonin transporter expression reduces fear and recruitment of parvalbumin interneurons of the amygdala. Neuropsychopharmacol 40, 3015 (2015).
Calakos, K. C., Blackman, D., Schulz, A. M. & Bauer, E. P. Distribution of type I corticotropin-releasing factor (CRF1) receptors on GABAergic neurons within the basolateral amygdala. Synapse 71, e21953–e21953 (2017).
Barkus, C. et al. Variation in serotonin transporter expression modulates fear-evoked hemodynamic responses and theta-frequency neuronal oscillations in the amygdala. Biol. Psychiatry 75, 901–908 (2014).
Wolff, S. B. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).
Muller, J. F., Mascagni, F. & McDonald, A. J. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J. Comp. Neurol. 500, 513–529 (2007).
Fuchs, T. et al. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol. Psychiatry 22, 920 (2016).
Butler, R. K. et al. Comparison of the activation of somatostatin- and neuropeptide Y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp. Neurol. 238, 52–63 (2012).
Truitt, W. A., Johnson, P. L., Dietrich, A. D., Fitz, S. D. & Shekhar, A. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neurosci 160, 284–294 (2009).
Muller, J. F., Mascagni, F. & McDonald, A. J. Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus. J. Comp. Neurol. 456, 217–236 (2003).
Vereczki, V. et al. Synaptic organization of perisomatic GABAergic inputs onto the principal cells of the mouse basolateral amygdala. Front. Neuroanat. 10, 20 (2016).
Vogel, E., Krabbe, S., Gründemann, J., Wamsteeker Cusulin, J. I. & Lüthi, A. Projection-specific dynamic regulation of inhibition in amygdala micro-circuits. Neuron 91, 644–651 (2016).
Lutz, B., Marsicano, G., Maldonado, R. & Hillard, C. J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705 (2015).
Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521 (2013).
Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662 (2013).
Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).
Hunt, S., Sun, Y., Kucukdereli, H., Klein, R. & Sah, P. Intrinsic circuits in the lateral central amygdala. eNeuro 4, 0367–16 (2017).
Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).
Stoop, R., Hegoburu, C. & van den Burg, E. New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. Ann. Rev. Neurosci. 38, 369–388 (2015).
Duvarci, S., Popa, D. & Paré, D. Central amygdala activity during fear conditioning. J. Neurosci. 31, 289–294 (2011).
Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332 (2013).
Cai, H., Haubensak, W., Anthony, T. E. & Anderson, D. J. Central amygdala PKC-δ + neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17, 1240 (2014).
Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).
Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).
McCall, J. G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).
Isosaka, T. et al. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163, 1153–1164 (2015).
Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002).
Andero, R., Dias Brian, G. & Ressler Kerry, J. A Role for Tac2, NkB, and Nk3 receptor in normal and dysregulated fear memory consolidation. Neuron 83, 444–454 (2014).
Flores, Á., Saravia, R., Maldonado, R. & Berrendero, F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci. 38, 550–559 (2015).
Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455 (2015).
Kalscheuer, V. M. et al. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum. Mutat. 30, 61–68 (2009).
Parente, D. J. et al. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. Am. J. Med. Genet. A. 173, 213–216 (2017).
Deckert, J. et al. GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation: a potential neurogenetic pathway to panic disorder. Mol. Psychiatry 22, 1431 (2017).
Babaev, O. et al. Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacol 100, 56–65 (2016).
Blundell, J. et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav. 8, 114–126 (2009).
Papadopoulos, T. et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin‐deficient mice. EMBO J. 26, 3888–3899 (2007).
Kumar, K., Sharma, S., Kumar, P. & Deshmukh, R. Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol. Biochem. Behav. 110, 174–184 (2013).
Felice D., O’Leary O. F., Cryan J. F. in GABAB Receptor (ed. Colombo G) Targeting the GABAB receptor for the treatment of depression and anxiety disorders, pp 219-250 (Springer International Publishing, Switzerland, 2016).
O’Sullivan, G. A. et al. Forebrain-specific loss of synaptic GABAA receptors results in altered neuronal excitability and synaptic plasticity in mice. Mol. Cell. Neurosci. 72, 101–113 (2016).
Sekiguchi, M. et al. A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain 132, 124–135 (2009).
Vaillend, C. & Chaussenot, R. Relationships linking emotional, motor, cognitive and GABAergic dysfunctions in dystrophin-deficient mdx mice. Hum. Mol. Genet. 26, 1041–1055 (2017).
Chaussenot, R. et al. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: a reappraisal from sensory to executive processes. Neurobiol. Learn. Mem. 124, 111–122 (2015).
Smith, K. S. & Rudolph, U. Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABAA receptor subtypes. Neuropharmacol 62, 54–62 (2012).
Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. & Sperk, G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci 101, 815–850 (2000).
Stefanits, H. et al. GABAA receptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. J. Comp. Neurol. 526, 324–348 (2018).
Pettingill, P. et al. Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization. Neurology 84, 1233–1241 (2015).
Chandra, D., Korpi, E. R., Miralles, C. P., De Blas, A. L. & Homanics, G. E. GABAAreceptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. BMC Neurosci. 6, 30 (2005).
Earnheart, J. C. et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression States. J. Neurosci. 27, 3845–3854 (2007).
Leppä, E. et al. Removal of GABAA Receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations. PLoS ONE 6, e24159 (2011).
Esmaeili, A., Lynch, J. W. & Sah, P. GABAA receptors containing Gamma1 subunits contribute to inhibitory transmission in the central amygdala. J. Neurophysiol. 101, 341–349 (2009).
Dixon, C. L., Sah, P., Keramidas, A., Lynch, J. W. & Durisic, N. γ1-Containing GABA-A receptors cluster at synapses where they mediate slower synaptic currents than γ2-containing GABA-A receptors. Front. Mol. Neurosci. 10, 178 (2017).
Marowsky, A., Fritschy, J.-M. & Vogt, K. E. Functional mapping of GABAA receptor subtypes in the amygdala. Eur. J. Neurosci. 20, 1281–1289 (2004).
Ehrlich, D. E., Ryan, S. J., Hazra, R., Guo, J.-D. & Rainnie, D. G. Postnatal maturation of GABAergic transmission in the rat basolateral amygdala. J. Neurophysiol. 110, 926–941 (2013).
Heldt, S. A. & Ressler, K. J. Amygdala-specific reduction of α1-GABAA receptors disrupts the anticonvulsant, locomotor, and sedative, but not anxiolytic, effects of benzodiazepines in Mice. J. Neurosci. 30, 7139–7151 (2010).
Gafford, G. M. et al. Cell-type specific deletion of GABA(A)α1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc. Natl Acad. Sci. USA 109, 16330–16335 (2012).
Gao, Y. & Heldt, S. A. Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences. Front. Cell. Neurosci. 10, 39 (2016).
Koester, C. et al. Dissecting the role of diazepam-sensitive γ-aminobutyric acid type A receptors in defensive behavioral reactivity to mild threat. Pharmacol. Biochem. Behav. 103, 541–549 (2013).
Dixon, C. I., Rosahl, T. W. & Stephens, D. N. Targeted deletion of the GABRA2 gene encoding α2-subunits of GABAA receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacol. Biochem. Behav. 90, 1–8 (2008).
Engin, E. et al. Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife 5, e14120 (2016).
Marowsky, A., Rudolph, U., Fritschy, J.-M. & Arand, M. Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors. J. Neurosci. 32, 8611–8619 (2012).
Behlke L, M. et al A Pharmacogenetic ‘Restriction-of-Function’ Approach Reveals Evidence for Anxiolytic-Like Actions Mediated by α5-Containing GABAA Receptors in Mice. Neuropsychopharmacol. 41, 2492 (2016).
Gassmann, M. & Bettler, B. Regulation of neuronal GABAB receptor functions by subunit composition. Nat. Rev. Neurosci. 13, 380 (2012).
Delaney, A. J., Esmaeili, A., Sedlak, P. L., Lynch, J. W. & Sah, P. Differential expression of glycine receptor subunits in the rat basolateral and central amygdala. Neurosci. Lett. 469, 237–242 (2010).
McCracken, L. M. et al. Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain. Proc. Natl Acad. Sci. USA 114, E7179–E7186 (2017).
Tyagarajan, S. K. & Fritschy, J.-M. Gephyrin: a master regulator of neuronal function? Nat. Rev. Neurosci. 15, 141–156 (2014).
Tretter, V., Mukherjee, J., Maric, H., Schindelin, H. & Sieghart, W. Moss S. Gephyrin, the enigmatic organizer at GABAergic synapses. Front. Cell. Neurosci. 6, 23 (2012).
Lionel, A. C. et al. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum. Mol. Genet. 22, 2055–2066 (2013).
Waldvogel, H. J. et al. Distribution of gephyrin in the human brain: an immunohistochemical analysis. Neurosci 116, 145–156 (2003).
Chhatwal, J. P., Myers, K. M., Ressler, K. J. & Davis, M. Regulation of Gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci. 25, 502–506 (2005).
Poulopoulos, A. et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63, 628–642 (2009).
Chen, C.-H., Lee, P.-W., Liao, H.-M. & Chang, P.-K. Neuroligin 2 R215H mutant mice manifest anxiety, increased prepulse inhibition, and impaired spatial learning and memory. Front. Psychiatry 8, 257 (2017).
Hines, R. M. et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J. Neurosci. 28, 6605–6067 (2008).
Liang, J. et al. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Mol. Psychiatry 20, 850–859 (2015).
Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl Acad. Sci. USA 105, 1710–1715 (2008).
Radyushkin, K. et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8, 416–425 (2009).
Saiepour, L. et al. Complex role of Collybistin and Gephyrin in GABAA receptor clustering. J. Biol. Chem. 285, 29623–29631 (2010).
Zaccaria, M. L., Di Tommaso, F., Brancaccio, A., Paggi, P. & Petrucci, T. C. Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neurosci 104, 311–324 (2001).
Hintsch, G. et al. The Calsyntenins—a family of postsynaptic membrane proteins with distinct neuronal expression patterns. Mol. Cell. Neurosci. 21, 393–409 (2002).
Lipina, T. V. et al. Cognitive deficits in Calsyntenin-2-deficient mice associated with reduced GABAergic transmission. Neuropsychopharmacol 41, 802–810 (2016).
Ranneva, S. V., Pavlov, K. S., Gromova, A. V., Amstislavskaya, T. G. & Lipina, T. V. Features of emotional and social behavioral phenotypes of calsyntenin2 knockout mice. Behav. Brain Res. 332, 343–354 (2017).
Saha, R. et al. GABAergic synapses at the axon initial segment of basolateral amygdala projection neurons modulate fear extinction. Neuropsychopharmacol 42, 473–484 (2017).
Saha, R. et al. Perturbation of GABAergic synapses at the axon initial segment of basolateral amygdala induces trans-regional metaplasticity at the medial prefrontal cortex. Cereb. Cortex 28, 395–410 (2018).
Rupprecht, R. et al. Translocator protein (18 kD) as Target for anxiolytics without benzodiazepine-like side effects. Science 325, 490–493 (2009).
Kalinichev, M. et al. The drug candidate, ADX71441, is a novel, potent and selective positive allosteric modulator of the GABAB receptor with a potential for treatment of anxiety, pain and spasticity. Neuropharmacol 114, 34–47 (2017).
Farb, D. H. & Ratner, M. H. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol. Rev. 66, 1002–1032 (2014).
Savage, K., Firth, J., Stough, C. & Sarris, J. GABA-modulating phytomedicines for anxiety: a systematic review of preclinical and clinical evidence. Phytother. Res. 32, 3–18 (2018).