Response measurement and optimization of direct mailings

Journal für Betriebswirtschaft - Tập 62 - Trang 261-308 - 2012
Nadine Schröder1, Harald Hruschka1
1Lehrstuhl für Marketing, Universität Regensburg, Regensburg, Germany

Tóm tắt

Beginning with 1995, we discuss different studies that deal with response measurement and optimization of direct mailings. Most of these studies analyze data sets from mail order companies or charities. We classify various dependent and predictor variables and—w.r.t. the latter distinguish static and dynamic effects. Response models are divided into parametric and flexible models. Besides, we analyze important modeling aspects, i.e., latent heterogeneity and endogeneity. Optimization methods are presented according to whether they refer to static or dynamic objectives. Based on these modeling aspects we evaluate the different studies. Considering various studies of model evaluation it becomes evident that logit models frequently constitute a good choice. However, Bayesian neural nets and Tobit models turn out to be good alternatives. As predictor effects are concerned results vary. Authors do not completely agree on which variables are the most important. Furthermore, signs and significances of predictors vary across studies. The majority of studies neglect latent heterogeneity and endogeneity. Finally, results show that there are still plenty of interesting research possibilities, such as a comprehensive evaluation of models or new specifications of (mailing) variables.

Tài liệu tham khảo

Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge Ansari A, Mela CF (2003) E-customization. J Mark Res 40(2):131–145 Baesens B, Viaene S, Van den Poel D, Vanthienen J, Dedene G (2002) Bayesian neural network learning for repeat purchase modelling in direct marketing. Eur J Oper Res 138:191–211 Baumgartner B, Hruschka H (2005) Allocation of catalogs to collective customers based on semiparametric response models. Eur J Oper Res 162(3):839–849 Bitran G, Mondschein S (1996) Mailing decisions in the catalog sales industry. Manag Sci 42(9):1364–1381 Blattberg RC, Kim B-D, Neslin SA (2008) Database marketing analyzing and managing customers. Springer, New York Breiman L (2001) Random forests. Mach Learn 45(1):5–32 Bult JR, Wansbeek T (1995) Optimal selection for direct mail. Mark Sci 14(4):378–394 BVH (2011) Genutzte Informationsquellen der Kunden für den Kauf im Interaktiven Handel, [press release], 2011, Available at: http://www.bvh.info/index.php?eID=tx_cms_showpic&file=uploads%2Fpics%2FFolie6.PNG&md5=8568ac1b6081ba3303b5724e0ef4238fc88accd1&parameters[0]=YTo0OntzOjU6IndpZHRoIjtzOjQ6IjgwMG0iO3M6NjoiaGVpZ2h0IjtzOjQ6IjYw&parameters[1]=MG0iO3M6NzoiYm9keVRhZyI7czo0MToiPGJvZHkgc3R5bGU9Im1hcmdpbjowOyBi&parameters[2]=YWNrZ3JvdW5kOiNmZmY7Ij4iO3M6NDoid3JhcCI7czozNzoiPGEgaHJlZj0iamF2&parameters[3]=YXNjcmlwdDpjbG9zZSgpOyI%2BIHwgPC9hPiI7fQ%3D%3D, Accessed 28.09.12 BVH (2012) Umsatzzahlen des Interaktiven Handels im 1. Quartal 2012, [press release], 17.04.2012, Available at: http://www.bvh.info/presse/pressemitteilungen/details/datum/2012/april/artikel/umsatzzahlen-des-interaktiven-handels-im-1-quartal-2012-grosse-umsaetze-schon-im-ersten-quartal-de/, Accessed 28.09.12 Cameron AC, Trivedi PK (2009) Microeconometrics methods and applications, 8th edn. Cambridge Univ. Press, Cambridge Campbell D, Erdahl R, Johnson D, Bibelnieks E, Haydock M, Bullock M, Crowder H (2001) Optimizing customer mail streams at fingerhut. Interfaces 31(1):77–90 Chintagunta P, Erdem T, Rossi PE, Wedel M (2006) Structural modeling in marketing. Review and assessment. Mark Sci 25(6):604–616 Corstjens M, Doyle P (1981) A model for optimizing retail space allocations. Manag Sci 27(7):822–833 Cosslett SR (1983) Distribution-free maximum likelihood estimator of the binary choice model. Econometrica 51(3):765–782 Cui G, Wong ML, Lui H-K (2006) Machine learning for direct marketing response models: Bayesian networks with evolutionary programming. Manag Sci 52(4):597–612 Desmet P (1996) Comparaison de la prédictivité d’un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct. Rech Appl Mark 11(2):17–27 Donkers B, Paap R, Jonker JJ, Franses PH (2006) Deriving target selection rules from endogenously selected samples. J Appl Econom 21(5):549–562 Elsner R, Krafft M, Huchzermeier A (2003) Optimizing rhenania’s mail-order business through dynamic multilevel modeling (DMLM). Interfaces 33(1):50–66 Elsner R, Krafft M, Huchzermeier A (2004) Optimizing rhenania’s direct marketing business through dynamic multilevel modeling (DMLM) in a multicatalog-brand environment. Mark Sci 23(2):192–206 Erickson T, Whitehed TM (2002) Two-step GMM estimation of the errors-in-variables model using high-order moments. Econom Theory 18(3):776–799 Fader PS, Hardie BGS, Lee KL (2005) RFM and CLV: using iso-value curves for customer base analysis. J Mark Res 42(4):415–430 Fader PS, Hardie BGS, Shang J (2010) Customer-base analysis in a discrete-time noncontractual setting. Mark Sci 29(6):1086–1108 Francis N, Holland N (1999) The diary of a charity donor: an exploration of research information from the royal mail consumer panel and mail characteristics survey. Int J Nonprofit Volunt Sect Mark 4(3):217–223 Gönül F, Shi MZ (1998) Optimal mailing of catalogs: a new methodology using estimable structural dynamic programming models. Manag Sci 44(9):1249–1262 Gönül FF, Ter Hofstede F (2006) How to compute optimal catalog mailing decisions. Mark Sci 25(1):65–74 Gönül FF, Kim B-D, Shi MZ (2000) Mailing smarter to catalog customers. J Interact Mark 14(2):2–16 Ha K, Cho S, Maclachlan D (2005) Response models based on bagging neural networks. J Interact Mark 19(1):17–30 Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, London Holland H (1993) Direktmarketing. Verlag Franz Vahlen, München Hruschka H (2008) Neural nets and genetic algorithms in marketing. In: Wierenga B (ed) Handbook of marketing decision models. International series in operations research and management science. Springer, New York, pp 399–433 Hruschka H (2010) Considering endogeneity for optimal catalog allocation in direct marketing. Eur J Oper Res 206(1):239–247 Hruschka H, Baumgartner B, Semmler M (2003) Wirkungsmessung und Allokation von Katalogen in Versandhandel und Direktmarketing: Katalogversand an Sammelbesteller. Z Betriebswirtsch 73(1):7–23 Izenman AJ (2008) Modern multivariate statistical techniques regression, classification, and manifold learning. Springer, New York Jen L, Chou C-H, Allenby GM (2003) A Bayesian approach to modeling purchase frequency. Mark Lett 14(1):5–20 Jonker J-J, Paap R, Franses PH (2000) Modeling charity donations: target selection, response time and gift size. Available at: http://repub.eur.nl/res/pub/1640/feweco20000217100756.pdf. Accessed 28.09.12 Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge Kwon Y-K, Moon B-R (2001) Personalized email marketing with a genetic programming circuit model. In: Proceedings of the genetic and evolutionary computation conference, San Francisco, CA, USA, pp 1352–1358 Larivière B, van den Poel D (2005) Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Syst Appl 29(2):472–484 Leeflang PSH, Wittink DR, Wedel M, Naert PA (2000) Building models for marketing decisions. Kluwer Academic, Boston Levin N, Zahavi J (1998) Continuous predictive modeling—a comparative analysis. J Interact Mark 12(2):5–22 Levin N, Zahavi J (2001) Predictive modeling using segmentation. J Interact Mark 15(2):2–22 Malthouse EC (1999) Ridge regression and direct marketing scoring models. J Interact Mark 13(4):10–23 Manchanda P, Rossi PE, Chintagunta P (2004) Response modeling with nonrandom marketing-mix variables. J Mark Res 41(4):467–478 Naik PA, Piersma N (2002) Understanding the role of marketing communications in direct marketing. Econometric institute report ei 2002-13, Econometric Institute, Erasmus University Rotterdam:1-29 Nash EL (1994) Direct marketing: strategy planning execution, 3rd edn. McGraw-Hill, New York Piersma N, Jonker J-J (2004) Determining the optimal direct mailing frequency. Eur J Oper Res 158(1):173–182 Popkowski Leszczyc PTL, Bass FM (1998) Determining the effects of observed and unobserved heterogeneity on consumer brand choice. Appl Stoch Models Data Anal 14:95–115 Prinzie A, van den Poel D (2008) Random forests for multiclass classification: random multinomial logit. Expert Syst Appl 34(3):1721–1732 Reutterer T, Mild A, Natter M, Taudes A (2006) A dynamic segmentation approach for targeting and customizing direct marketing campaigns. J Interact Mark 20(3/4):43–57 Rhee S, McIntyre S (2008) Including the effects of prior and recent contact effort in a customer scoring model for database marketing. J Acad Mark Sci 36(4):538–551 Roberts ML, Berger PD (1999) Direct marketing management. Prentice Hall, Upper Saddle River Rossi PE, McCulloch RE, Allenby GM (1996) The value of purchase history data in target marketing. Mark Sci 4(15):321–340 Rust RT, Verhoef PC (2005) Optimizing the marketing interventions mix in intermediate-term CRM. Mark Sci 24(3):477–489 Simester D, Hu Y(J), Brynjolfsson E, Anderson ET (2009) Dynamics of retail advertising: evidence from a field experiment. Econ Inq 47(3):482–499 Suh EH, Noh KC, Suh CK (1999) Customer list segmentation using the combined response model. Expert Syst Appl 17:89–97 Train K (2003) Discrete choice methods with simulation. Cambridge Univ Press, Cambridge Urban A (1998) Einsatz Künstlicher Neuronaler Netze bei der operativen Werbemitteleinsatzplanung im Versandhandel im Vergleich zu ökonometrischen Verfahren. Dissertation, University of Regensburg Van Diepen M, Donkers B, Franses PH (2009) Dynamic and competitive effects of direct mailings: a charitable giving application. J Mark Res 46(1):120–133 Wedel M, Kamakura WA (1998) Market segmentation concetpural and methodological foundations. Kluwer Academic, Boston Zahavi J, Levin N (1997) Applying neural computing to target marketing. J Direct Mark 11(4):76–93