Empirical Modeling of Photoenhanced Current–Voltage Hysteresis in PEDOT:PSS/ZnO Thin-Film Devices

Journal of Electronic Materials - Tập 49 - Trang 3130-3139 - 2020
Ebraheem Ali Azhar1, Wai Mun Cheung1, Micah Tuttle2, Benjamin Helfrecht1, David Bull2, Hongbin Yu1
1School of Electrical, Computer, and Energy Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, USA
2School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, USA

Tóm tắt

“Hybrid” organic–inorganic semiconducting devices consisting of zinc oxide (ZnO) thin films coated with poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) with Au and Al surface electrodes have been fabricated and electrically characterized. In dark condition, devices with Au electrodes exhibited ohmic behavior, while Al electrodes resulted in diodic behavior. These devices demonstrated photostimulated current–voltage (I–V) hysteresis, in which dissimilar electrical current is observed based on the voltage sweep direction, notably as a function of the illuminated wavelength exposed on the device surface during electrical characterization. Ultraviolet-induced oxygen desorption on the ZnO surface, leading to electrons transitioning into the conduction band, gives rise to an increase of accumulated charges within the ZnO/PEDOT:PSS dipole interface. This effect was found to produce a hysteresis effect that increased under ultraviolet illumination. Characteristic I–V hysteresis was empirically modeled using a series of first-order multiple linear regression expressions that decouple device processing and characterization conditions. The numerical markers of hysteresis in I–V traces, including first-order estimates of scaled and shifted transformations, were modeled. The results of this analysis indicated that illumination is statistically a stronger explanatory variable for hysteresis than all other parameters, which further suggests that space charges stored on the dipole interface more significantly influence hysteresis than do trapped charges alone.

Tài liệu tham khảo

Y. Chen, G. Liu, C. Wang, W. Zhang, R.W. Li, and L. Wang, Mater. Horiz. 1(5), 489 (2014). G. Hassan, S. Ali, J. Bae, and C.H. Lee, Appl. Phys. A 123(4), 256 (2017). P. Gkoupidenis, N. Schaefer, B. Garlan, and G.G. Malliaras, Adv. Mater. 27(44), 7176 (2015). Y. Van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, and A. Salleo, Nat. Mater. 16(4), 414 (2017). M. Nakano, A. Tsukazaki, R.Y. Gunji, K. Ueno, A. Ohtomo, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 91(14), 142113 (2007). Y.J. Lin, Appl. Phys. Lett. 92(4), 046101 (2008). A. Arena, N. Donato, and G. Saitta, Microelectron. J. 38(6–7), 678 (2007). M. Ambrico, A. Cardone, T. Ligonzo, V. Augelli, P.F. Ambrico, S. Cicco, G.M. Farinola, M. Filannino, G. Perna, and V. Capozzi, Org. Electron. 11(11), 1809 (2010). Y.J. Lin, J. Appl. Phys. 103(6), 063702 (2008). E.L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumüller, M.G. Christoforo, and M.D. McGehee, Energy Environ. Sci. 7(11), 3690 (2014). H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5(9), 1511 (2014) L. Chua, Semicond. Sci. Technol. 29(10), 104001 (2014). A. Moujoud, S.H. Oh, K.Y. Heo, K.W. Lee, and H.J. Kim, Org. Electron. 10(5), 785 (2009). D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley-IEEE Press, Piscataway, NJ : Hoboken, N.J, 2015). H.S. Majumdar, A. Bandyopadhyay, A. Bolognesi, and A.J. Pal, J. Appl. Phys. 91(4), 2433 (2002). Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, and H.C. Chang, J. Phys. D Appl. Phys. 42(16), 165104 (2009). Y.M. Chin, J.C. Lin, Y.J. Lin, and K.C. Wu, Sol. Energy Mater. Sol. Cells 94(12), 2154 (2010). A. Moujoud, S.H. Oh, H.S. Shin, and H.J. Kim, Physica Status Solidi (a) 207(7), 1704 (2010). T. Nagata, S. Oh, Y. Yamashita, H. Yoshikawa, R. Hayakawa, K. Kobayashi, T. Chikyow, and Y. Wakayama, Appl. Phys. Lett. 101(17), 173303 (2012) G. Richardson, S.E. O’Kane, R.G. Niemann, T.A. Peltola, J.M. Foster, P.J. Cameron, and A.B. Walker, Energy Environ. Sci. 9(4), 1476 (2016). S. Meloni, T. Moehl, W. Tress, M. Franckevicius, M. Saliba, Y.H. Lee, P. Gao, M.K. Nazeeruddin, S.M. Zakeeruddin, and U. Rothlisberger, Nat. Commun. 7, 10334 (2016). S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley-Interscience, Hoboken, 2006). H. Yu, E.A. Azhar, T. Belagodu, S. Lim, and S. Dey, J. Appl. Phys. 111(10), 102806 (2012). E.A. Azhar, J. Vanjaria, S. Ahn, T. Fou, S.K. Dey, T. Salagaj, N. Sbrockey, G.S. Tompa, and H. Yu, ACS Omega 3(5), 4899 (2018). E.A. Azhar, W. Ye, B. Helfrecht, G. Chen, L. Thompson, H. Yu, and S. Dey, IEEE Trans. Electron Devices 65(8), 3291 (2018) S. Fonash, Solar Cell Device Physics, Second Edition, 2nd edn. (Academic, Burlington, 2010). Z. Ya-Bin, H. Wei, N. Jie, H. Fan, Z. Yue-Liang, and C. Cong, Chin. Phys. B 20(4), 047301 (2011). M. Di Ventra and Y.V. Pershin, Mater. Today 14(12), 584 (2011). L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, and T. Prodromakis, Sci. Rep. 4, 4522 (2014).