Fabrication and magnetic properties of hierarchical nickel microwires with nanothorns

Central European Journal of Chemistry - Tập 8 - Trang 434-439 - 2010
Junhao Zhang1, Ling Yang2, Xiaofang Cheng1, Jinmeng Zhang1, Fucai Li1
1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Jiangsu Zhenjiang, China
2Security and Environment Engineering College, Capital University of Economics and Business, Beijing, China

Tóm tắt

Hierarchical nickel microwires with nanothorns were fabricated through a reduction of nickelous salt with hydrazine in diethanolamine. The product was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The growth mechanism of the nickel microwires with nanothorns is proposed, based on the evolution of the structures and morphologies, which could be ascribed to the cooperative effect of the complexant of diethanolamine and inherent magnetic interactions. Magnetic properties of the product were measured at room temperature and compared with other shaped counterparts.

Tài liệu tham khảo

H.Q. Yan, R.R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang, J. Am. Chem. Soc. 125, 4782 (2003) Y.L. Hou, H. Kondoh, T. Ohta, Chem. Mater. 17, 3995 (2005) Y. Kim, Y.S. Seo, T. Kim, N. Lee, Y. Seo, Solid State Commun. 149, 839 (2009) D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F.F. Shi, K.L. Fan, J. Phys. Chem. C 113, 4369 (2009) D. Yan et al., Chem. Phys. Lett. 440, 134 (2007) S.H. Xuan, Y.X. Wang, K.C.F. Leung, K.Y. Shu, J. Phys. Chem. C 112, 18809 (2008) L. Epamenondas, O. Maria, K.L. Tasola, K. Frank, C. Walter, Nano Lett. 3, 569 (2003) Y.J. Zhang et al., Cryst. Growth Des. 8, 3206 (2008) W.X. Zhang, C.B. Wang, H.L. Lien, Catal. Taday 40, 387 (1998) R. Hernandez, S. Polizu, S. Turenne, L. Yahia, Bio-Med. Mater. Eng. 12, 37 (2002) A. Smogunov, A.D. Corso, E. Tosatti, Surf. Sci. 507–510, 609 (2002) A. Wei, S.L. Tripp, J. Liu, T. Kasama, R.E. Dunin-Borkowski, Supramol. Chem. 21, 189 (2009) Y.J. Xiong, Y. Xie, Z.Q. Li, R. Zhang, J. Yang, C.Z. Wu, New J. Chem. 27, 588 (2003) O. Sardan, A.D. Yalcinkaya, B.E. Alaca, Nanotechnology 17, 2227 (2006) X.M. Ni, H.G. Zheng, Q. Yang, K.B. Tang, G.X. Liao, Eur. J. Inorg. Chem. 677 (2009) Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhao, Y. Huang, Mater. Sci. Eng. B 163, 22 (2009) J. Jin et al., Angew. Chem., Int. Ed. 40, 2135 (2001) E.V. Shevchenko, D.V. Talapin, A.L. Rogach, A. Komowski, M. Haase, H. Weller, J. Am. Chem. Soc. 124, 11480 (2002) Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000) Y.G. Sun, B. Mayers, Y.N. Xia, Nano Lett. 3, 675 (2003) A.A. Umar, M. Oyama, Cryst. Growth Des. 6, 818 (2006) N. Cordente, R.M. Espaud, F. Secocq, M.J. Casanove, C. Amies, B. Chaudret, Nano Lett. 1, 565 (2001) Z.G. An, S.L. Pan, J.J. Zhang, J. Phys. Chem. C 113: 1346 (2009) F. Jia, L. Zhang, X. Shang, Y. Yang, Adv. Mater. 20, 1050 (2008) A. Mathew, N. Munichandraiah, G.M. Rao, Mater. Sci. Eng. B, 158, 7 (2009) Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 15, 1946 (2003) X.M. Ni, X.B. Su, Z.P. Yang, H.G. Zheng, J. Cryst. Growth 252, 612 (2003) K.V.P.M. Shaf, A. Gedanken, R. Prozorov, J. Balogh, Chem. Mater. 10, 3445 (1998) N. Cordente, C. Amiens, B. Chaudret, M. Respaud, F. Senocq, M.J. Casanove, J. Appl. Phys. 94, 6358 (2003) D.H. Chen, S.H. Wu, Chem. Mater. 12, 1354 (2000)