BDS code bias periodical mitigation by low-pass filtering and its applications in precise positioning
Tóm tắt
The code-phase divergences, which are minimal for GPS, GLONASS, and Galileo satellites, are commonly found in BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise positioning applications which use code observations are severely affected by these code biases. We present an analysis of code bias based on multipath (MP) combination observations. To mitigate the effect of BDS code bias on precise positioning, we proposed a periodical correction method using a low-pass filter for BDS GEO, IGSO and MEO satellites. The auto-correlation of MP series over long periods is analyzed to obtain the periods of the dominant repeating components for three types of BDS satellites. The periods of the dominant daily repeating components are close to 86,160 s for BDS GEO and IGSO satellites while 603,120 s for MEO satellites. The zero phase-shift low-pass filter was used to extract the low-frequency components of MP series and then low-frequency components are applied to mitigate the code bias periodically. The developed correction methods can make a more remarkable improvement for the accuracy of MP series, compared to the current elevation-dependent correction models. Data sets collected at 50 Global Navigation Satellite System (GNSS) ground stations including 15 of the International GNSS Monitoring and Assessment System (iGMAS) and 35 of the Multi-GNSS Experiment (MGEX) stations are employed for this study. To analyze the influence of code bias on precise positioning and validate the effectiveness of the correction methods, some applications such as single point positioning (SPP), wide-lane (WL) ambiguity analysis and Uncalibrated Phase Delays (UPDs) estimation are conducted. After applying the proposal correction method to the code observations, SPP solutions outperform the uncorrected ones in term of positioning accuracy. The positioning accuracy decreased by 0.28 and 0.1 m in the north and east components and the improvements are more significant for the U components decreased by 0.42 m. In addition, the systematic variations of Melbourne-Wübbena (MW) combination are greatly removed and the convergence time of the MW series are decreased. Moreover, significant improvement is also achieved in terms of the usage rate and residuals of UPDs estimation.
Tài liệu tham khảo
Chen K, Xu T, Chen G et al (2015) The orbit and clock combination of iGMAS analysis centers and the analysis of their precision. In: Proceedings of lecture notes in electrical engineering, China satellite navigation conference (CSNC). Springer, Vol. 341, pp 421–438. https://doi.org/10.1007/978-3-662-46635-3%2036
CSNO (2013) BeiDou navigation satellite system signal in space interface control document (open service signal). China Satellite Navigation Office, Beijing Version 20, December 26, 2013
de Bakker PF, Tiberius CCJM, van der Marel H, van Bree RJP (2012) Short and zero baseline analysis of GPS L1 C/a, L5Q, GIOVE E1B, and E5aQ signals. GPS Solutions 16(1):53–64. https://doi.org/10.1007/s10291-011-0202-3
Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. J Geod 90(4):379–396
Guo F, Li X, Liu W (2016) Mitigating BeiDou code bias: taking into account the stochastic model of corrections. Sensors 16(6):909
Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of compass M-1 signals. GPS Solutions 16:117–126. https://doi.org/10.1007/s10291-011-0210-3
Li P, Zhang X, Guo F (2016) Ambiguity resolved precise point positioning with GPS and BeiDou. J Geod 91(1):25–40
Li X, Ge M, Dai X et al (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635
Li X, Ge M, Zhang H, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416
Li X, Zhang X, Ren X et al (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 5:8328. https://doi.org/10.1038/srep08328
Liu Y, Song W, Lou Y, Ye S, Zhang R (2017) GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers. GPS Solut 21(2):427–437
Lou Y, Gong X, Gu S et al (2016) Assessment of code bias variations of BeiDou triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS Solut 21(1):177–186
Melbourne W (1985) The case for ranging in GPS-based geodetic systems. In: First international symposium on precise positioning with the global positioning system, Rockville, pp 373–386
Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Riley S (2012) A COMPASS for Asia: first experience with the BeiDou-2 regional navigation system. Poster at IGS workshop in Olsztyn, Poland 2012. http://www.igs.org/presents/poland2012/posters. Accessed 10 July 2014
Montenbruck O, Hauschild A, Steigenberger P et al (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222
Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49
Perello Gisbert JV, Batzilis N, Risuen, O GL, Rubio JA (2012) GNSS payload and signal characterization using a 3 m dish antenna. In: Proc. ION GNSS 2012, Nashville, pp 347–356
Wang G, Jong KD, Zhao Q, Hu Z, Guo J (2015) Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut 19(1):129–139
Wang M, Chai H, Li Y (2017) Performance analysis of BDS/GPS precise point positioning with undifferenced ambiguity resolution. Adv Space Res 60(12):2581–2595
Wanninger L, Beer S (2015) BeiDou code pseudorange variations: diagnosis and therapy. GPS Solut 19(4):639–648
Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier observationss. In: First international symposium on precise positioning with the global positioning system, Rockville, pp 403–412
Ye S, Chen D, Liu Y et al (2015) Carrier phase multipath mitigation for BeiDou navigation satellite system[J]. GPS Solut 19(4):545–557
Zhang F, He H, Tang B, Shen F, Chen R (2013) Analysis of signal characteristics and positioning performance affected by pseudorange multipath for COMPASS. In: sun J, Jiao W, Wu H, Shi C (eds) proceedings of China satellite navigation conference (CSNC) 2013. Lecture notes in electrical engineering, vol 243, 15–17 may, Wuhan. Springer, berlin, pp 493–503 uza E M, Monico J F G
Zhang X, He X, Liu W (2017) Characteristics of systematic errors in the BDS hatch–Melbourne–Wübbena combination and its influence on wide-lane ambiguity resolution. GPS Solut 21(1):265–277
Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486. https://doi.org/10.1007/s00190-013-0622-7