Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings

Marianne JR Gittoes1, Gareth Irwin1
1Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, Cardiff, UK

Tóm tắt

Gymnasts are exposed to a high incidence of impact landings due to the execution of repeated dismount performances. Biomechanical research can help inform recent discussions surrounding a proposed rule change in potentially injurious gymnastic dismounting. The review examines existing understanding of the mechanisms influencing the impact loads incurred in gymnastic-style landings achieved using biomechanical approaches. Laboratory-based and theoretical modelling research of inherent and regulatory mechanisms is appraised. The integration of the existing insights into injury prevention interventions studies is further considered in the appraisals. While laboratory-based studies have traditionally been favoured, the difficulty in controlling and isolating mechanisms of interest has partially restricted the understanding gained. An increase in the use of theoretical approaches has been evident over the past two decades, which has successfully enhanced insight into less readily modified mechanisms. For example, the important contribution of mass compositions and 'tuned' mass coupling responses to impact loading has been evidenced. While theoretical studies have advanced knowledge in impact landing mechanics, restrictions in the availability of laboratory-based input data have suppressed the benefits gained. The advantages of integrating laboratory-based and theoretical approaches in furthering scientific understanding of loading mechanisms have been recognised in the literature. Since a multi-mechanism contribution to impact loading has been evident, a deviation away from studies examining isolated mechanisms may be supported for the future. A further scientific understanding of the use of regulatory mechanisms in alleviating a performer's inherent injury predisposition may subsequently be gained and used to inform potential rule changes in gymnastics. While the use of controlled studies for providing scientific evidence for the effectiveness of gymnastics injury counter measures has been advocated over the past decade, a lack of information based on randomised controlled studies or actual evaluation of counter measures in the field setting has been highlighted. The subsequent integration of insight into biomechanical risk factors of landing with clinical practice interventions has been recently advocated.

Tài liệu tham khảo

Özgüven HN, Berme N: An experimental and analytical study of impact forces during human jumping. Journal of Biomechanics. 1988, 21: 1061-1066. 10.1016/0021-9290(88)90252-7. McNitt-Gray JL, Yokoi T, Millward C: Landing strategy adjustments made by female gymnasts in response to drop height and mat composition. Journal of Applied Biomechanics. 1993, 9: 173-190. Hunter LY, Torgan C: Dismounts in gymnastics: Should scoring be reevaluated?. The American Journal of Sports Medicine. 1983, 11: 208-210. 10.1177/036354658301100404. Caine D, Cochrane B, Caine C, Zemper E: An epidemiologic investigation of injuries affecting young competitive female gymnasts. The American Journal of Sports Medicine. 1988, 17: 811-820. Singh S, Smith GA, Fields SK, Mackenzie LB: Gymnastics-related injuries to children treated in emergency departments in the United States, 1990 2005. Paediatrics. 2008, 121: 954-960. 10.1542/peds.2007-0767. Daly RM, Bass SL, Finch CP: Balancing the risk of injury to gymnasts: how effective are countermeasures?. British Journal of Sports Medicine. 2001, 35: 8-20. 10.1136/bjsm.35.1.8. Arendt EA: Common musculo-skeletal injuries in women. The Physician and Sports Medicine. 1996, 24: 39-50. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P: Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. The American Journal of Sports Medicine. 2005, 33: 492-501. 10.1177/0363546504269591. Hewett TE, Stroupe AL, Nance TA, Noyes FR: Plyometric training in female athletes - decreased impact forces and increased hamstring torques. American Journal of Sports Medicine. 1996, 24: 765-773. 10.1177/036354659602400611. Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA: Gender differences in muscular protection of the knee in torsion in size-matched athletes. The Journal of Bone and Joint Surgery. 2003, 84-A: 782-789. Gehring D, Melnyk M, Gollhofer A: Gender and fatigue have influence on knee joint control strategies during landing. Clinical Biomechanics. 2009, 24: 82-87. 10.1016/j.clinbiomech.2008.07.005. Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE: The effects of generalised joint laxity on risk of anterior cruciate ligament injury in young female athletes. The American Journal of Sports Medicine. 2008, 36: 1073-1080. 10.1177/0363546507313572. Boden BP, Griffin LY, Garrett WE: Etiology and prevention of noncontact ACL injury. The Physician and Sports Medicine. 2000, 28: 53-60. McNitt-Gray JL: Kinematics and impulse characteristics of drop landings from three heights. International Journal of Sport Biomechanics. 1991, 7: 201-224. Yeow CH, Lee PVS, Goh JCH: Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double leg-landing. The Knee. 2009, 16: 381-386. 10.1016/j.knee.2009.02.002. DeVita P, Skelly WA: Effect of landing stiffness on joint kinetics and energetics in the lower-extremity. Medicine and Science in Sports and Exercise. 1992, 24: 108-115. Kovacs I, Tihanyi J, DeVita P, Racz L, Barrier J, Hortobagyi T: Foot placement modifies kinematics and kinetics during drop jumping. Medicine and Science in Sports and Exercise. 1999, 31: 708-716. 10.1097/00005768-199905000-00014. Cortes N, Onate J, Abrantes J, Gagen L, Dowling E, Van Lunen B: Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landing. Journal of Applied Biomechanics. 2007, 23: 289-299. Pain MTG, Challis JH: The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings. Journal of Biomechanics. 2006, 39: 119-124. 10.1016/j.jbiomech.2004.10.036. Gittoes MJR, Kerwin DG: Interactive effects of mass proportions and coupling properties on external loading in simulated forefoot impact landings. Journal of Applied Biomechanics. 2009, 25: 238-246. Butler RJ, Crowell HP, McClay-Davis I: Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics. 2003, 18: 511-517. 10.1016/S0268-0033(03)00071-8. McNitt-Gray JL: Kinetics of the lower-extremities during drop landings from 3 heights. Journal of Biomechanics. 1993, 26: 1037-1046. 10.1016/S0021-9290(05)80003-X. Arampatzis A, Brüggemann GP, Klapsing GM: A three-dimensional shank-foot model to determine the foot motion during landings. Medicine and Science in Sports and Exercise. 2002, 34: 130-138. Seegmiller JG, McCaw ST: Ground reaction forces among gymnasts and recreational athletes in drop landings. Journal of Athletic Training. 2003, 38: 311-314. Zhang S, Bates BT, Dufek JS: Contributions of lower extremity joints to energy dissipation during landings. Medicine and Science in Sport and Exercise. 2000, 32: 812-819. 10.1097/00005768-200004000-00014. Self BP, Paine D: Ankle Biomechanics during four landing techniques. Medicine & Science in Sports and Exercise. 2001, 33: 1338-1344. Elvin NG, Elvin AE, Arnockzy SP, Torry MP: The correlation of segment angular accelerations and impact forces with knee angle in jump landing. Journal of Applied Biomechanics. 2007, 23: 203-212. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR: Gender differences in lower extremity kinematics, kinetics and energy absorption during landings. Clinical Biomechanics. 2003, 18: 662-669. 10.1016/S0268-0033(03)00090-1. Lees A: Methods of impact absorption when landing from a jump. Engineering in Medicine. 1981, 10: 207-211. 10.1243/EMED_JOUR_1981_010_055_02. Yu B, Lin C, Garrett WE: Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics. 2006, 21: 297-305. 10.1016/j.clinbiomech.2005.11.003. Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ: Sex differences in lower extremity biomechanics during single leg landings. Clinical Biomechanics. 2007, 22: 681-688. 10.1016/j.clinbiomech.2007.03.001. Gittoes MJR, Irwin GI, Mullineaux DR, Kerwin DG: Whole-body and multi-joint kinematic control strategy variability during backward rotating dismounts from beam. Journal of Sport Sciences. 2011, 29: 1051-1058. 10.1080/02640414.2011.576690. McNitt-Gray JL, Hester DME, Mathiyakom W, Munkasy BA: Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. Journal of Biomechanics. 2001, 34: 1471-1482. 10.1016/S0021-9290(01)00110-5. Chappell JD, Yu B, Kirkendall DT, Garrett WE: A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. American Journal of Sports Medicine. 2002, 30: 261-267. Kernozek TW, Torry MR, van Hoof H, Cowley H, Tanner S: Gender differences in frontal and sagittal plane biomechanics in drop landings. Medicine and Science in Sport and Exercise. 2005, 37: 1003-1012. Dufek JS, Bates BT: Biomechanical factors associated with injury during landing in jump sports. Sports Medicine. 1991, 12: 326-337. 10.2165/00007256-199112050-00005. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE: Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clinical Biomechanics. 2010, 25: 693-699. 10.1016/j.clinbiomech.2010.04.016. Padua DA, Boling MC, DiStefano LJ, Onate JA, Beutler AI, Marshall SW: Reliability of landing error scoring system real-time, a clinical assessment tool of jump-landing biomechanics. Journal of Sport Rehabilitation. 2011, 20: 145-156. Myer GD, Ford KR, Hewett TE: New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis. British Journal of Sports Medicine. 2011, 45: 238-244. 10.1136/bjsm.2010.072843. Yeadon MR, Challis JH: Review of sports biomechanics research. Journal of Sports Sciences. 1994, 12: 3-32. 10.1080/02640419408732156. Hatze H: A comprehensive model for human motion simulation and its application to the take-off phase of the long-jump. Journal of Biomechanics. 1981, 14: 135-142. 10.1016/0021-9290(81)90019-1. Gerritsen KGM, van den Bogert AJ, Nigg BM: Direct dynamics simulation of the impact phase in heel-toe running. Journal of Biomechanics. 1995, 28: 661-668. 10.1016/0021-9290(94)00127-P. Gruber K, Ruder H, Denoth J, Schneider K: A comparative study of impact dynamics: Wobbling mass model versus rigid body models. Journal of Biomechanics. 1998, 31: 439-444. 10.1016/S0021-9290(98)00033-5. Liu W, Nigg BM: A mechanical model to determine the influence of masses and mass distribution on the impact force during running. Journal of Biomechanics. 2000, 33: 219-224. 10.1016/S0021-9290(99)00151-7. Nigg BM, Liu W: The effect of muscle stiffness and damping on simulated impact force peaks during running. Journal of Biomechanics. 1999, 32: 849-856. 10.1016/S0021-9290(99)00048-2. Pain MTG, Challis JH: Wobbling mass influence on impact ground reaction forces: A simulation model sensitivity analysis. Journal of Applied Biomechanics. 2004, 20: 309-316. Mills C, Pain MTG, Yeadon MR: The influence of simulation model complexity on the estimation of joint loading in gymnastics landings. Journal of Biomechanics. 2008, 41: 620-628. 10.1016/j.jbiomech.2007.10.001. Mills C, Pain MTG, Yeadon MR: Reducing ground reaction forces in gymnastics' landings may increase internal loading. Journal of Biomechanics. 2009, 42: 671-678. 10.1016/j.jbiomech.2009.01.019. Gittoes MJR, Brewin MA, Kerwin DG: Soft tissue contributions to impact forces using a four-segment wobbling mass model of forefoot-heel landings. Human Movement Science. 2006, 25: 775-787. 10.1016/j.humov.2006.04.003. Arthurs KL, Andrews DM: Upper extremity soft and rigid tissue mass prediction using segment anthropometric measures and DXA. Journal of Biomechanics. 2009, 42: 389-394. 10.1016/j.jbiomech.2008.11.021. Gittoes MJR, Kerwin DG, Brewin MA: Sensitivity of loading to the timing of joint kinematic strategies in simulated forefoot impact landings. Journal of Applied Biomechanics. 2009, 25: 229-237.