microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic–ischemic conditions in vitro

Yue Xing1, Jinlin Hou1, Tianzhu Guo1, Shusen Zheng1, Changqing Zhou1, Huihui Huang1, Yuyang Chen1, Kan Sun1, Tingting Zhong1, Jingfeng Wang1, Honghao Li2, Tongtong Wang3
1The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
2Thyroid and Vascular Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
3Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hou J, Wang L, Jiang J, Zhou C, Guo T, Zheng S, Wang T: Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 2013, 9: 326-338. 10.1007/s12015-012-9421-4.

Chavakis E, Koyanagi M, Dimmeler S: Enhancing the outcome of cell therapy for cardiac repair progress from bench to bedside and back. Circulation. 2010, 121: 325-335. 10.1161/CIRCULATIONAHA.109.901405.

Wang T, Tang W, Sun S, Wan Z, Xu T, Huang Z, Weil MH: Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol. 2009, 46: 378-384. 10.1016/j.yjmcc.2008.11.014.

Hare JM, Fishman JE, Gerstenblith G, Velazquez DLD, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA: Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON Randomized Trial Mesenchymal Stem Cells and Ischemic Cardiomyopathy. JAMA. 2012, 308: 2369-2379. 10.1001/jama.2012.25321.

Mathiasen AB, Jørgensen E, Qayyum AA, Haack-Sørensen M, Ekblond A, Kastrup J: Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial). Am Heart J. 2012, 164: 285-291. 10.1016/j.ahj.2012.05.026.

Wen Z, Zheng S, Zhou C, Wang J, Wang T: Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J Cell Mol Med. 2011, 15: 1032-1043. 10.1111/j.1582-4934.2010.01255.x.

Williams AR, Hare JM: Mesenchymal stem cells biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011, 109: 923-940. 10.1161/CIRCRESAHA.111.243147.

Wang T, Sun S, Wan Z, Weil MH, Tang W: Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction. Resuscitation. 2012, 83: 1391-1396. 10.1016/j.resuscitation.2012.02.033.

Figeac F, Lesault PF, Coz O, Damy T, Souktani R, Trébeau C, Schmitt A, Ribot J, Mounier R, Guguin A: Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells. 2014, 32: 216-230. 10.1002/stem.1560.

Lee RH, Oh JY, Choi H, Bazhanov N: Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem. 2011, 112: 3073-3078. 10.1002/jcb.23250.

Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K, Rouy D, Altman P, Schwarz R, Mendizabal A: Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J. 2011, 161: 487-493. 10.1016/j.ahj.2010.11.024.

Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS: A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009, 54: 2277-2286. 10.1016/j.jacc.2009.06.055.

Copland IB, Lord-Dufour S, Cuerquis J, Coutu DL, Annabi B, Wang E, Galipeau J: Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition. Stem Cells. 2009, 27: 467-477. 10.1634/stemcells.2008-0520.

McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O'Toole D, O'Brien T: Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013, 24: 840-851. 10.1089/hum.2011.009.

Zhu W, Chen J, Cong X, Hu S, Chen X: Hypoxia and serum deprivation‒induced apoptosis in mesenchymal stem cells. Stem Cells. 2006, 24: 416-425. 10.1634/stemcells.2005-0121.

Hou M, Liu J, Liu F, Liu K, Yu B: C1q tumor necrosis factor-related protein-3 protects mesenchymal stem cells against hypoxia-and serum deprivation-induced apoptosis through the phosphoinositide 3-kinase/Akt pathway. Int J Mol Med. 2014, 33: 97-104.

Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002.

Nie Y, Han B-M, Liu X-B, Yang J-J, Wang F, Cong X-F, Chen X: Identification of MicroRNAs involved in hypoxia-and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci. 2011, 7: 762-768.

Huang F, Zhu X, Hu X-Q, Fang Z-F, Tang L, Lu X-L, Zhou S-H: Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med. 2013, 31: 484-492.

Wen Z, Zheng S, Zhou C, Yuan W, Wang J, Wang T: Bone marrow mesenchymal stem cells for post‒myocardial infarction cardiac repair: micrornas as novel regulators. J Cell Mol Med. 2012, 16: 657-671. 10.1111/j.1582-4934.2011.01471.x.

Lee DY, Deng Z, Wang C-H, Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Nat Acad Sci U S A. 2007, 104: 20350-20355. 10.1073/pnas.0706901104.

Kim SW, Kim HW, Huang W, Okada M, Welge JA, Wang Y, Ashraf M: Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378. Cardiovasc Res. 2013, 100: 241-251. 10.1093/cvr/cvt192.

Fang J, Song X-W, Tian J, Chen H-Y, Li D-F, Wang J-F, Ren A-J, Yuan W-J, Lin L: Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis. 2012, 17: 410-423. 10.1007/s10495-011-0683-0.

Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, Gupta M: A novel cardiomyocyte-enriched MicroRNA, miR-378, targets insulin-like growth factor 1 receptor implications in postnatal cardiac remodeling and cell survival. J Biol Chem. 2012, 287: 12913-12926. 10.1074/jbc.M111.331751.

Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M: A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 2013, 288: 11216-11232. 10.1074/jbc.M112.442384.

Prasad SVN, Duan Z-H, Gupta MK, Surampudi VSK, Volinia S, Calin GA, Liu C-G, Kotwal A, Moravec CS, Starling RC: Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem. 2009, 284: 27487-27499. 10.1074/jbc.M109.036541.

Wang T, Tang W, Sun S, Ristagno G, Huang Z, Weil MH: Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Crit Care Med. 2007, 35: 2587-2593. 10.1097/01.CCM.0000285992.99391.7E.

Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D: Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005, 67: 30-38. 10.1016/j.cardiores.2005.04.007.

Wang S, Qu X, Zhao RC: Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012, 5: 19-10.1186/1756-8722-5-19.

Wang J, Li Z, Zhang Y, Liu X, Chen L, Chen Y: CX43 change in LPS preconditioning against apoptosis of mesenchymal stem cells induced by hypoxia and serum deprivation is associated with ERK signaling pathway. Mol Cell Biochem. 2013, 380: 267-275. 10.1007/s11010-013-1683-x.

Zhang Q, Yang Y-J, Wang H, Dong Q-T, Wang T-J, Qian H-Y, Xu H: Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012, 21: 1321-1332. 10.1089/scd.2011.0684.

Huang F, Li M-L, Fang Z-F, Hu X-Q, Liu Q-M, Liu Z-J, Tang L, Zhao Y-S, Zhou S-H: Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology. 2013, 125: 18-30. 10.1159/000347081.

Ouyang YB, Giffard RG: microRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int. 2014, 77: 2-8.

Ji L, Roth JA: Tumor suppressor FUS1 signaling pathway. J Thorac Oncol. 2008, 3: 327-10.1097/JTO.0b013e31816bce65.

Mao J, Lv Z, Zhuang Y: MicroRNA-23a is involved in tumor necrosis factor-α induced apoptosis in mesenchymal stem cells and myocardial infarction. Exp Mol Pathol. 2014, 97: 23-30. 10.1016/j.yexmp.2013.11.005.

Peng C-F, Han Y-L, Yan C-H: Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-α-induced apoptosis via NF-κB in mesenchymal stem cells. Biochem Biophys Res Commun. 2011, 406: 601-607. 10.1016/j.bbrc.2011.02.100.

Poynter JA, Herrmann JL, Manukyan MC, Wang Y, Abarbanell AM, Weil BR, Brewster BD, Meldrum DR: Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg. 2011, 213: 253-260. 10.1016/j.jamcollsurg.2011.04.005.

Collino F, Bruno S, Deregibus MC, Tetta C, Camussi G: MicroRNAs and mesenchymal stem cells. Vitam Horm. 2011, 87: 291-320.

L-l Z, J-j L, Liu F, W-h L, Wang Y-s, Zhu B, Yu B: MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2012, 420: 875-881. 10.1016/j.bbrc.2012.03.092.

Bonauer A, Boon RA, Dimmeler S: Vascular micrornas. Curr Drug Targets. 2010, 11: 943-949. 10.2174/138945010791591313.

Wang S, Olson EN: AngiomiRs – key regulators of angiogenesis. Curr Opin Gene Dev. 2009, 19: 205-211. 10.1016/j.gde.2009.04.002.

Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, Hu J: Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology. 2006, 107: 17-29.

Kim SH, Moon H-H, Kim HA, Hwang K-C, Lee M, Choi D: Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol Ther. 2011, 19: 741-750. 10.1038/mt.2010.301.

Penna C, Perrelli MG, Karam JP, Angotti C, Muscari C, Montero‒Menei CN, Pagliaro P: Pharmacologically active microcarriers influence VEGF‒A effects on mesenchymal stem cell survival. J Cell Mol Med. 2013, 17: 192-204. 10.1111/j.1582-4934.2012.01662.x.

Skrzypek K, Tertil M, Golda S, Ciesla M, Weglarczyk K, Collet G, Guichard A, Kozakowska M, Boczkowski J, Was H: Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid Redox Signal. 2013, 19: 644-660. 10.1089/ars.2013.5184.

Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S, Milia AF, Bellando-Randone S, Fiori G, Conforti ML: Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis. 2011, 70: 2011-2021. 10.1136/ard.2011.150607.

Ball S, Worthington J, Canfield A, Merry C, Kielty C: Mesenchymal stromal cells: inhibiting PDGF receptors or depleting fibronectin induces mesodermal progenitors with endothelial potential. Stem Cells. 2014, 32: 694-705. 10.1002/stem.1538.

Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM, Lam PY: Human bone marrow‒derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013, 31: 146-155. 10.1002/stem.1247.

Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY: MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol. 2011, 51: 337-346. 10.1016/j.yjmcc.2011.05.019.

Böttner M, Krieglstein K, Unsicker K: The transforming growth factor‒βs. J Neurochem. 2000, 75: 2227-2240.

Zhao L, Hantash BM: TGF-β1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam Horm. 2011, 87: 127-141.

Kurpinski K, Chu J, Wang D, Li S: Proteomic profiling of mesenchymal stem cell responses to mechanical strain and TGF-beta1. Cell Mol Bioeng. 2009, 2: 606-614. 10.1007/s12195-009-0090-6.

Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J: Inhibition of TGF-[beta] signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013, 19: 704-712. 10.1038/nm.3143.

Kato M: TGF-β-induced signaling circuit loops mediated by microRNAs as new therapeutic targets for renal fibrosis?. Kidney Int. 2013, 84: 1067-1069. 10.1038/ki.2013.297.

Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, Noro R, Minegishi Y, Kubota K, Gemma A: MiR-134/487b/655 cluster regulates TGF-β-induced epithelial–mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther. 2014, 13: 444-453. 10.1158/1535-7163.MCT-13-0448.

Sun X, He Y, Ma T-T, Huang C, Zhang L, Li J: Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation. Mol Cell Biochem. 2014, 388: 11-23. 10.1007/s11010-013-1895-0.

Ghosh D, Lili L, McGrail DJ, Matyunina LV, McDonald JF, Dawson MR: Integral role of platelet-derived growth factor in mediating transforming growth factor-β1–dependent mesenchymal stem cell stiffening. Stem Cells Dev. 2014, 23: 245-261. 10.1089/scd.2013.0240.