Increasing occurrence of cold and warm extremes during the recent global warming slowdown

Nature Communications - Tập 9 Số 1
Nathaniel C. Johnson1, Shang‐Ping Xie2, Yu Kosaka2, Xichen Li2
1Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, 08540, NJ, USA
2Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0206, La Jolla, CA, 92093-0206, USA

Tóm tắt

Abstract

The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

Từ khóa


Tài liệu tham khảo

Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

Lewandowsky, S., Risbey, J. S. & Oreskes, N. On the definition and identifiability of the alleged “hiatus” in global warming. Sci. Rep. 5, 16784 (2015).

Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).

Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. J. Geophys. Res 140, 1935–1944 (2014).

Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2016).

Meehl, G. A. et al. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to the equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

England, M. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 4, 911–916 (2014).

Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).

Overland, J. E., Wood, K. R. & Wang, M. Warm Arctic–cold continents: climate impacts of the newly open Arctic sea. Polar. Res. 30, 15787 (2011).

Wolter, K. et al. How unusual was the cold winter of 2013/14 in the upper Midwest? “Explaining Extreme Events 2014 a Climate Perspective”. Bull. Am. Meteorol. Soc. 96, S10–S13 (2015).

Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change 4, 577–582 (2014).

Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).

Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

Sillman, J., Donat, M. G., Fyfe, J. C. & Zwiers, F. W. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 9, 064023 (2014).

Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701 (2008).

Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).

Wold, H. in Multivariate Analysis (ed Krishnajah, P.R.) Estimation of principal components and related models by iterative least squares. 391–420 (Academic, New York, 1966).

Smoliak, B. V., Wallace, J. M., Stoelinga, M. T. & Mitchell, T. P. Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett. 37, L03801 (2010).

Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–763 (2015).

Sun, L., Perlwitz, J. & Hoerling, M. What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? Geophys. Res. Lett. 43, 5345–5352 (2016).

Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

McKinnon, K. A., Rhines, A., Tingley, M. P. & Huybers, P. Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci. 9, 389–394 (2016).

Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704 (2006).

Sutton, R. T. & Hodson, D. L. R. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005).

Ruprich-Robert, Y., Msadek, R., Castruccio, F., Delworth, T. & Danabasoglu, G. Assessing the climate impacts of the observed Atlantic multidecadal variability using GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017).

McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

Vecchi, G. A. et al. On the seasonal forecasting of regional tropical cyclone activity. J. Clim. 27, 7994–8016 (2014).

Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 42, 8131–8139 (2015).

Horton, D. E. et al. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522, 465–469 (2015).

McCusker, K. E., Fyfe, J. C. & Sigmond, M. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci. 9, 838–842 (2016).

Wang, X., Li, J., Sun, C. & Liu, T. NAO and its relationship with the Northern hemisphere mean surface temperature in CMIP5 simulations. J. Geophys. Res. 122, 4202–4227 (2017).

Johnson, N. C. & Kosaka, Y. The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Clim. Dyn. 47, 3737–3765 (2016).

Petoukhov, V. & Semenov, V. A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. 115, D21111 (2010).

Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

Kim, B.-M. et al. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 5, 4646 (2014).

Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

Brönnimann, S. Impact of El Niño-southern oscillation on European climate. Rev. Geophys. 45, RG3003 (2007).

Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. EOS 87, 233–241 (2005).

Villarini, G. & Vecchi, G. A. Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Clim. 26, 3231–3240 (2013).

DelSole, T., Tippett, M. K. & Shukla, J. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Clim. 24, 909–926 (2011).

Folland, C. K. et al. Influence of anthropogenic and oceanic forcing on recent climate change. Geophys. Res. Lett. 25, 353–356 (1998).

Kamae, Y., Shiogama, H., Watanabe, M. & Kimoto, M. Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett. 41, 5192–5199 (2014).

Rhines, A. & Huybers, P. Frequent summer temperature extremes reflect changes in the mean, not variance. Proc. Nat. Acad. Sci. 110, E546 (2013).

Argüeso, D., Di Luca, A., Perkins-Kirkpatrick, S. E. & Evans, J. P. Seasonal mean temperature changes control future heat waves. Geophys. Res. Lett. 43, 7653–7660 (2016).

Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

Donat, M. G., Pitman, A. J. & Seneviratne, S. I. Regional warming of hot extremes accelerated by surface energy fluxes. Geophys. Res. Lett. 44, 7011–7019 (2017).

Findell, K. L. et al. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Comm. 8, 989 (2017).

Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

Zhang, X., Hegerl, G., Zwiers, F. W. & Kenyon, J. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim. 18, 1641–1651 (2005).

Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. 118, 2098–2118 (2013).

Wolter, K. & Timlin, M. S. El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 31, 1074–1087 (2011).

Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 22987–22994 (1993).

Fröhlich, C. Observations of irradiance variations. Space Sci. Rev. 94, 15–24 (2000).

Wang, Y.-M., Lean, J. L. & Sheeley, N. R. Jr. Modeling the sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005).

Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc. 77, 437–471 (1996).

Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

Santer, B. D. et al. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. 105, 7337–7356 (2000).

Delworth, T. L. et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

Jia, L. et al. Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Clim. 28, 2044–2062 (2015).

Yang, X. et al. Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Clim. 28, 3592–3611 (2015).

Murakami, H. et al. Statistical-dynamical seasonal forecast of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev. 144, 2101–2123 (2016).

Jia, L. et al. The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Clim. 29, 4121–4135 (2016).

Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally, H. J. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data (updated yearly). NASA DAAC at the National Snow and IceData Center: Subset used: November 1979–November 2013, 45°N to 90°N and 180°W to 180°E, accessed 15 Sep 2015, https://doi.org/10.5067/8GQ8LZQVL0VL (1996).

Rohde, R. et al. Berkeley Earth Temperature averaging process. Geoinfor. Geostat: An Overview 1: https://doi.org/10.4172/gigs.1000103 (2013).

Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).

Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).