Deliquescence of small particles

Journal of Chemical Physics - Tập 116 Số 1 - Trang 311-321 - 2002
Lynn M. Russell1, Yi Ming2
1Department of Chemical Engineering, Princeton University, Princeton, New Jersey, 08544
2Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544

Tóm tắt

The deliquescence of particles smaller than 100 nm in diameter from crystalline form to liquid droplets involves both solvation effects and surface energies. Here we study this phenomenon for the case of salt particles of initial dry diameters from 8 to 100 nm that are exposed to humid conditions from 45 to 95% relative humidity. With a simple thermodynamic equilibrium model for three soluble species (sodium chloride, ammonium sulfate, and a soluble organic compound), we show that the role of surface tension is to increase the relative humidity at which particles will deliquesce. For example, 15 nm dry diameter sodium chloride particles deliquesce at 83%, an 8% increase over the 75% deliquescence relative humidity for supermicron droplets and bulk solution. Many soluble species in air above 45% relative humidity are wetted with multiple layers of water molecules such that the relevant interface is that between the partially dissolved salt crystal and a saturated salt solution rather than between the dry crystal and air. Since surface tensions for this solid/liquid interface are not well known, a range of values have been used from the literature, yielding consistent results. While the existence of unstable equilibria during deliquescence of the system precludes complete experimental verification of the predicted behavior with measurements, a recent experiment suggests indirect agreement with the change in predicted deliquescence relative humidity.

Từ khóa


Tài liệu tham khảo

2001, J. Geophys. Res., 106, 1097, 10.1029/2000JD900512

1986, J. Colloid Interface Sci., 114, 409, 10.1016/0021-9797(86)90426-1

2000, Environ. Sci. Technol., 34, 4313, 10.1021/es9907109

2000, J. Geophys. Res., 105, 22231, 10.1029/2000JD900220

2000, J. Chem. Phys., 113, 8200, 10.1063/1.1315993

1968, Surf. Sci., 12, 37, 10.1016/0039-6028(68)90005-8

1974, Surf. Sci., 46, 393, 10.1016/0039-6028(74)90316-1

1976, Surf. Sci., 54, 393, 10.1016/0039-6028(76)90233-8

1999, J. Phys. Chem. A, 103, 4777, 10.1021/jp991142m

2000, J. Phys. Chem. A, 104, 11463, 10.1021/jp002968n

1999, J. Geophys. Res., 104, 21275, 10.1029/1999JD900286

1998, J. Phys. Chem. B, 102, 6145, 10.1021/jp981594j

1997, Langmuir, 13, 6345, 10.1021/la970629o

1997, J. Phys. Chem. B, 101, 10880, 10.1021/jp972810b

1999, Surf. Sci., 427–428, 102

2000, J. Chem. Phys., 112, 6817, 10.1063/1.481256

1964, J. Phys. Chem., 68, 2831, 10.1021/j100792a015

1990, J. Chem. Phys., 93, 1273, 10.1063/1.459191

1995, J. Chem. Phys., 103, 1119, 10.1063/1.469822

1979, Nature (London), 277, 548, 10.1038/277548a0

1993, Zh. Prikl. Khim. (St. Petersburg), 66, 1428

1999, Adv. Colloid Interface Sci., 79, 229, 10.1016/S0001-8686(98)00072-4

1998, Microsc. Microanal., 4, 23, 10.1017/S1431927698980023

1994, Atmos. Environ., 27, 467

1995, Aerosol. Sci. Technol., 23, 443, 10.1080/02786829508965327

1996, J. Geophys. Res., 101, 18709, 10.1029/96JD01543

1970, Science, 170, 626, 10.1126/science.170.3958.626

1975, Chem. Eng. Sci., 30, 1177, 10.1016/0009-2509(75)87021-7