3D domain swapping: A mechanism for oligomer assembly

Protein Science - Tập 4 Số 12 - Trang 2455-2468 - 1995
Melanie J. Bennett1,2, Michael P. Schlunegger2, David Eisenberg2
1Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6059
2Molecular Biology Institute, Department of Chemistry and Biochemistry, and UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California —Los Angeles, Los Angeles, California 90095-1570

Tóm tắt

Abstract3D domain swapping is a mechanism for forming oligomeric proteins from their monomers. In 3D domain swapping, one domain of a monomeric protein is replaced by the same domain from an identical protein chain. The result is an intertwined dimer or higher oligomer, with one domain of each subunit replaced by the identical domain from another subunit. The swapped “domain” can be as large as an entire tertiary globular domain, or as small as an α‐helix or a strand of a β‐sheet. Examples of 3D domain swapping are reviewed that suggest domain swapping can serve as a mechanism for functional interconversion between monomers and oligomers, and that domain swapping may serve as a mechanism for evolution of some oligomeric proteins. Domain‐swapped proteins present examples of a single protein chain folding into two distinct structures.

Từ khóa


Tài liệu tham khảo

10.1038/323304a0

10.1126/science.181.4096.223

10.1006/jmbi.1995.0341

10.1038/347776a0

10.1002/pro.5560030911

10.1073/pnas.91.8.3127

10.1002/pro.5560030912

10.1002/bip.360301104

10.1073/pnas.89.5.1524

Blackburn P, 1982, The enzymes, 317

10.1016/0014-5793(94)01450-F

10.1021/bi00357a019

10.1016/S0006-3495(80)84929-0

10.1107/S0907444994003112

10.1128/MMBR.39.1.54-85.1975

10.1021/bi00151a036

Crestfield AM, 1962, On the aggregation of bovine pancreatic ribonuclease, Arch Biochem Biophys Suppl, 1, 217

10.1016/S0021-9258(19)67987-1

10.1126/science.1837174

10.1038/319199a0

Eisenberg D, 1989, Interpretation of protein folding and binding with atomic solvation parameters, Chemica Scripta, 29, 217

10.1016/0022-2836(89)90494-4

10.1093/protein/3.1.1

10.1016/0022-2836(85)90180-9

10.1038/271501a0

10.1038/nsb0995-746

Jackson DA, 1969, The formation and properties of dimers of the tryptophan synthetase α subunit of Escherichia coli, J Biol Chem, 244, 4526, 10.1016/S0021-9258(18)93659-8

10.1098/rstb.1995.0050

10.1016/0022-2836(88)90606-7

10.1038/360232a0

10.1107/S0108767390010224

10.1016/S0022-2836(75)80178-1

10.1515/bchm3.1993.374.7-12.1117

10.1111/j.1432-1033.1994.tb18724.x

10.1021/bi00865a047

10.1107/S0021889891004399

10.1016/0022-2836(91)90594-V

10.1002/prot.340050302

10.1111/j.1432-1033.1974.tb03707.x

10.1016/0079-6107(88)90010-7

Mazzarella L, 1993, Bovine seminal ribonuclease: Structure at 1.9 Å resolution, Acta Crystallogr D, 49, 389, 10.1107/S0907444993003403

10.1038/363172a0

10.1016/S0022-2836(65)80285-6

10.1073/pnas.92.16.7337

10.1126/science.8211159

Piccoli R, 1984, Relationships between nonhyperbolic kinetics and dimeric structure in ribonucleases, J Biol Chem, 259, 693, 10.1016/S0021-9258(17)43511-3

10.1042/bj2530329

10.1073/pnas.89.5.1870

10.1096/fasebj.9.1.7821762

Richards FM, 1973, Ribonuclease S

10.1016/S0969-2126(00)00018-6

10.1016/0022-2836(86)90245-7

10.1002/pro.5560020708

10.1002/j.1460-2075.1992.tb05396.x

10.1016/0959-440X(93)90144-A

Summers L, 1984, Peptide and protein reviews, 147

10.1515/bchm3.1987.368.2.1305

10.1016/0888-7543(89)90313-3

Tanabe T, 1987, Molecular cloning and structure of the human interleukin‐5 gene, J Biol Chem, 262, 16580, 10.1016/S0021-9258(18)49295-2

10.1002/pro.5560030905

10.1016/0003-9861(59)90209-7

10.1016/S0022-2836(83)80232-0

10.1016/S0021-9258(19)68195-0

10.1126/science.8266097

10.1146/annurev.bi.44.070175.001455

10.1016/S0969-2126(01)00193-9

10.1016/0167-4781(93)90142-Z