LVMB manifolds and quotients of toric varieties
Tóm tắt
In this article we study a class of manifolds introduced by Bosio called
$$\mathrm{{LVMB}}$$
manifolds. We provide an interpretation of his construction in terms of quotient of toric manifolds by complex Lie groups. Furthermore,
$$\mathrm{{LVMB}}$$
manifolds extend a class of manifolds obtained by Meersseman, called
$$\mathrm{{LVM}}$$
manifolds and we give a characterization of these manifolds using our toric description. Finally, we give an answer to a question asked by Cupit-Foutou and Zaffran.
Tài liệu tham khảo
Avner, A., David, M., Rapoport, M., Tai, Y.-S.: Smooth Compactifications of Locally Symmetric Varieties, 2nd edn. Cambridge University Press, Cambridge Mathematical Library, Cambridge (2010)
Battaglia, F., Zaffran, D.: Foliations modelling nonrational simplicial toric varieties. arXiv:1108.1637 (2011)
Bochner, S., Montgomery, D.: Groups on analytic manifolds. Ann. Math. (2) 48, 659–669 (1947)
Bosio, F.: Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky. Ann. Inst. Fourier (Grenoble) 51(5), 1259–1297 (2001)
Bröcker, T., tom Dieck, T.: Representations of compact Lie groups. In: Graduate Texts in Mathematics, vol. 98. Springer, New York (1985)
Cupit-Foutou, S., Zaffran, D.: Non-Kähler manifolds and GIT-quotients. Math. Z. 257(4), 783–797 (2007)
Ewald, G.: Combinatorial convexity and algebraic geometry. In: Graduate Texts in Mathematics, vol. 168, Springer, New York (1996). MR 1418400 (97i:52012)
Grünbaum, B.: Convex polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York (2003). Prepared and with a preface by Volker Kaibel. Victor Klee and Günter M, Ziegler
López de Medrano, S., Verjovsky, A.: A new family of complex, compact, non-symplectic manifolds. Bol. Soc. Brasil. Mat. 28(2), 253–269 (1997)
Meersseman, L.: A new geometric construction of compact complex manifolds in any dimension. Math. Ann. 317(1), 79–115 (2000)
Oda, T.: Convex bodies and algebraic geometry. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15. Springer, Berlin (1988). An introduction to the theory of toric varieties. Translated from the Japanese
Panov, T., Ustinovksy, Y.: Complex-analytic structures on moment-angle manifolds. Mosc. Math. J. 12(1), 149–172, 216 (2012)
Shephard, G.C.: Spherical complexes and radial projections of polytopes. Israel J. Math. 9, 257–262 (1971)
Tambour, J.: LVMB manifolds and simplicial spheres. Ann. Inst. Fourier (to appear). arXiv:1006.1797