Measuring immune selection

Parasitology - Tập 125 Số 7 - Trang S3-S16 - 2002
David J. Conway1, Smarajit Polley1
1Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT

Tóm tắt

Immune responses that kill pathogens or reduce their reproductive rate are generally important in protecting hosts from infection and disease. Pathogens that escape the full impact of such responses will survive, and any heritable genetic basis of this evasion will be selected. Due to the memory component of vertebrate immune responses, pathogens with rare alleles of a target antigen can have an advantage over those with common alleles, leading to the maintenance of a polymorphism. At the genetic level, there ought to be detectable signatures of balancing selection in the genes encoding these antigens. Here, methods for identifying these selective signatures are reviewed. Their practical utility for identifying which antigens are targets of protective immune responses is discussed.

Từ khóa


Tài liệu tham khảo

TAJIMA, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

10.1016/S0166-6851(01)00243-2

10.1046/j.1365-2540.2001.00895.x

10.1016/S0378-1119(00)00241-9

10.1038/11369

10.1016/S0020-7519(00)00135-1

10.1084/jem.193.12.1403

10.1016/S0140-6736(95)90754-8

10.1007/PL00006215

RANNALA, B. , QIU, W. G. & DYKHUIZEN, D. E. (2000). Methods for estimating gene frequencies and detecting selection in bacterial populations. Genetics 155, 499–508.

10.1126/science.1059878

10.1099/0022-1317-82-10-2475

10.1073/pnas.95.8.4425

10.1084/jem.193.3.375

FUDYK, T. C. , MACLEAN, I. W. , SIMONSEN, J. N. , NJAGI, E. N. , KIMANI, J. , BRUNHAM, R. C. & PLUMMER, F. A. (1999). Genetic diversity and mosaicism at the por locus of Neisseria gonorrhoeae . Journal of Bacteriology 181, 5591–5599.

10.1016/0166-6851(93)90002-F

10.1038/35085576

10.1016/S0166-6851(97)00130-8

10.1128/IAI.69.5.3286-3294.2001

10.1016/0166-6851(96)02718-1

10.1046/j.1365-2249.2000.01346.x

YANG, Z. , NIELSEN, R. , GOLDMAN, N. & PEDERSEN, A.-M. K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.

POLLEY, S. D. & CONWAY, D. J. (2001). Strong diversifying selection on domains of the Plasmodium falciparum Apical Membrane Antigen 1 gene. Genetics 158, 1505–1512.

10.1016/S0166-6851(01)00278-X

ESCALANTE, A. A. , LAL, A. A. & AYALA, F. J. (1998). Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum . Genetics 149, 189–202.

10.1007/978-1-4615-2383-3_8

10.1016/S0169-5347(00)01994-7

10.1128/IAI.68.12.6865-6870.2000

10.1126/science.293.5532.1070

10.1080/00034983.2001.11813622

NEI, M. & GOJOBORI, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous substitutions. Molecular Biology and Evolution 3, 418–426.

10.1016/S1471-4922(01)02079-7

10.1016/S0140-6736(01)06415-7

10.1128/JVI.74.22.10498-10507.2000

VERRA, F. & HUGHES, A. L. (1999). Evidence for ancient balanced polymorphism at the apical membrane antigen-1 (AMA-1) locus of Plasmodium falciparum . Molecular and Biochemical Parasitology 105, 149–153.

10.1016/S0140-6736(01)06957-4

10.1038/15224

ALLEN, T. M. , O'CONNOR, D. H. , JING, P. , DZURIS, J. L. , MOTHE, B. R. , VOGEL, T. U. , DUNPHY, E. & LLEBL, M. E. ETAL. (2000). Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390.

CONWAY, D. J. , GREENWOOD, B. M. & MCBRIDE, J. S. (1992). Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria endemic population. Infection and Immunity 60, 1122–1127.

CONWAY, D. J. , CAVANAGH, D. R. , TANABE, K. , ROPER, C. , MIKES, Z. S. , SAKIHAMA, N. , BOJANG, K. A. , ODUOLA, A. M. J. , KREMSNER, P. G. , ARNOT, D. E. , GREENWOOD, B. M. & MCBRIDE, J. S. (2000a). A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nature Medicine 6, 689–692.

OYOK, T. , ODONGA, C. , MULWANI, E. , ABUR, J. , KADUCU, F. , AKECH, M. , OLANGO, J. & ONEK, P. ET AL. (2001). Outbreak of Ebola Hemorrhagic Fever – Uganda, August 2000–January 2001. Journal of the American Medical Association 285, 1010–1012.

HAY, C. M. , RUHL, D. J. , BASGOZ, N. O. , WILSON, C. C. , BILLINGSLEY, J. M. , DEPASQUALE, M. P. , D'AQUILA, R. T. , WOLINSKY, S. M. , CRAWFORD, J. M. , MONTEFIORI, D. C. & WALKER, B. D. (1999). Lack of viral escape and defective in vivo activation of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes in rapidly progressive infection. Journal of Virology 73, 5509–5519.

10.1146/annurev.genom.1.1.539

WATTERSON, G. A. (1978). The homozygosity test of neutrality. Genetics 88, 405–417.

10.1016/S1369-5274(00)00158-2

10.1016/S0169-4758(96)10077-6

10.1073/pnas.96.24.14043

ALLRED, D. R. , CARLTON, J. M. R. , SATCHER, R. L. , LONG, J. A. , BROWN, W. C. , PATTERSON, P. E. , O'CONNOR, R. M. & STROUP, S. E. (2000). The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Molecular Cell 5, 153–162.

10.1016/S0166-6851(99)00222-4

10.4269/ajtmh.1995.53.7

10.1016/S0166-6851(01)00240-7

10.1073/pnas.071056298

CONWAY, D. J. , FANELLO, C. , LLOYD, J. M. , AL-JOUBORI, B. M. A.-S. , BALOCH, A. H. , SOMANATH, S. D. , ROPER, C. , ODUOLA, A. M. J. , MULDER, B. , POVOA, M. M. , SINGH, B. & THOMAS, A. W. (2000b). Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Molecular and Biochemical Parasitology 111, 163–171.

10.1111/j.1550-7408.1998.tb05080.x

FIDOCK, D. A. , GRAS-MASSE, H. , LEPERS, J. P. , BRAHIMI, K. , BENMOHAMED, L. , MELLOUK, S. , GUERIN-MARCHAND, C. , LONDONO, A. , RAHARIMALALA, L. , MEIS, J. F. , LANGSLEY, G. , ROUSSILHON, C. , TARTAR, A. & DRUILHE, P. (1994). Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. Journal of Immunology 153, 190–204.

FU, Y.-X. & LI, W.-H. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.

10.1038/35001088

10.1093/oxfordjournals.molbev.a026236

10.1126/science.279.5354.1173

10.1016/S0166-6851(00)00253-X

10.1038/311379a0

10.1128/IAI.68.12.7078-7086.2000

10.1016/0166-6851(95)00037-2

10.1017/CBO9780511623486

KOCKEN, C. H. M. , NARUM, D. L. , MASSOUGBODJI, A. , AYIVI, B. , DUBBELD, M. A. , VAN DER WEL, A. , CONWAY, D. J. , SANNI, A. & THOMAS, A. W. (2000). Molecular characterisation of Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with P. falciparum AMA-1, and antibody-mediated inhibition of red cell invasion. Molecular and Biochemical Parasitology 109, 147–156.

ZANOTTO, P. M. D. , KALLAS, E. G. , DE SOUZA, R. F. & HOLMES, E. C. (1999). Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153, 1077–1089.

10.1016/S0169-4758(00)01862-7

LI, W.-H. (1997). Molecular Evolution. Sunderland, Mass, Sinauer Associates, Inc.

MEHR, I. J. , LONG, C. D. , SERKIN, C. D. & SEIFERT, H. S. (2000). A homologue of the recombination-dependent growth gene, rdgC, is involved in gonococcal pilin antigenic variation. Genetics 154, 523–532.

10.1016/S0166-6851(00)00245-0

OZWARA, H. , KOCKEN, C. H. M. , CONWAY, D. J. , MWENDA, J. M. & THOMAS, A. W. (2001). Comparative analysis of Plasmodium reichenowi and P. falciparum erythrocyte-binding proteins reveals selection to maintain polymorphism in the erythrocyte-binding region of EBA-175. Molecular and Biochemical Parasitology 116, 81–84.

10.1084/jem.186.10.1689

10.1038/8444

10.1038/19309

10.1073/pnas.84.9.3014

10.1080/00034983.2000.11813591

10.1073/pnas.94.18.9869

STOTHARD, D. R. , BOGUSLAWSKI, G. & JONES, R. B. (1998). Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infection and Immunity 66, 3618–3625.

10.1128/IAI.69.2.627-639.2001

10.1016/S0092-8674(01)00199-4

10.1073/pnas.93.2.548

10.1002/eji.1830240627

ZHANG, J.-R. & NORRIS, S. J. (1998). Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi . Infection and Immunity 66, 3689–3697.

10.1073/pnas.061386098

10.1038/351652a0

10.1016/0022-2836(87)90649-8

10.1016/S0166-6851(01)00280-8