Genetically diverse mice are novel and valuable models of age-associated susceptibility to Mycobacterium tuberculosis

Immunity & Ageing - Tập 11 - Trang 1-7 - 2014
David E Harrison1, Clinton M Astle1, M Khalid Khan Niazi2, Samuel Major3, Gillian L Beamer3
1The Jackson Laboratory, Bar Harbor, USA
2The Ohio State University, Columbus USA
3Tufts University Cummings School of Veterinary Medicine, Grafton, USA

Tóm tắt

Tuberculosis, the disease due to Mycobacterium tuberculosis, is an important cause of morbidity and mortality in the elderly. Use of mouse models may accelerate insight into the disease and tests of therapies since mice age thirty times faster than humans. However, the majority of TB research relies on inbred mouse strains, and these results might not extrapolate well to the genetically diverse human population. We report here the first tests of M. tuberculosis infection in genetically heterogeneous aging mice, testing if old mice benefit from rapamycin. We find that genetically diverse aging mice are much more susceptible than young mice to M. tuberculosis, as are aging human beings. We also find that rapamycin boosts immune responses during primary infection but fails to increase survival. Genetically diverse mouse models provide a valuable resource to study how age influences responses and susceptibility to pathogens and to test interventions. Additionally, surrogate markers such as immune measures may not predict whether interventions improve survival.

Tài liệu tham khảo

Austad SN: Issues in the choice of genetic configuration for animal aging models. Exp Gerontol. 1997, 32 (1–2): 55-63. 10.1016/S0531-5565(96)00033-2. Roderick TH: Selection for radiation resistance in mice. Genetics. 1963, 48: 205-216. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA: High-resolution genetic mapping using the mouse diversity outbred population. Genetics. 2012, 190 (2): 437-447. 10.1534/genetics.111.132597. Churchill GA, Gatti DM, Munger SC, Svenson KL: The diversity outbred mouse population. Mamm Genome. 2012, 23 (9–10): 713-718. 10.1007/s00335-012-9414-2. Aspinall R: Age-related changes in the function of T cells. Microsc Res Tech. 2003, 62 (6): 508-513. 10.1002/jemt.10412. Mori T, Leung CC: Tuberculosis in the global aging population. Infect Dis Clin North Am. 2010, 24 (3): 751-768. 10.1016/j.idc.2010.04.011. Fox GJ, Menzies D: Epidemiology of Tuberculosis Immunology. The new Paradigm of Immunity to Tuberculosis, Advances in Experimental Medicine and Biology. Edited by: Divangahi M. 2013, Springer Science+Business Media, New York Orme IM: Aging and immunity to tuberculosis: increased susceptibility of old mice reflects a decreased capacity to generate mediator T lymphocytes. J Immunol. 1987, 138 (12): 4414-4418. Cooper AM, Callahan JE, Griffin JP, Roberts AD, Orme IM: Old mice are able to control low-dose aerogenic infections with Mycobacterium tuberculosis. Infect Immun. 1995, 63 (9): 3259-3265. Orme IM, Griffin JP, Roberts AD, Ernst DN: Evidence for a defective accumulation of protective t cells in old mice infected with Mycobacterium tuberculosis. Cell Immunol. 1993, 147 (1): 222-229. 10.1006/cimm.1993.1062. Moskalev AA, Shaposhnikov MV: Pharmacological inhibition of phosphoinositide 3 and tor kinases improves survival of Drosophila melanogaster. Rejuvenation Res. 2010, 13 (2–3): 246-247. 10.1089/rej.2009.0903. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C: A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 2008, 4 (2): e24-10.1371/journal.pgen.0040024. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R: Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011, 66 (2): 191-201. 10.1093/gerona/glq178. Cobbold SP: The mtor pathway and integrating immune regulation. Immunology. 2013, 140 (4): 391-398. 10.1111/imm.12162. Jagannath C, Bakhru P: Rapamycin-induced enhancement of vaccine efficacy in mice. Methods Mol Biol. 2012, 821: 295-303. 10.1007/978-1-61779-430-8_18. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM: In search of a new paradigm for protective immunity to tb. Nat Rev Microbiol. 2014, 12 (4): 289-299. 10.1038/nrmicro3230. Andersen P, Woodworth JS: Tuberculosis vaccines–rethinking the current paradigm. Trends Immunol. 2014, 35 (8): 387-395. 10.1016/j.it.2014.04.006. Modlin RL, Bloom BR: TB or not TB: That is no longer the question. Sci Transl Med. 2013, 5 (213): 213sr6-10.1126/scitranslmed.3007402. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009, 460 (7253): 392-395. Beamer GL, Cyktor J, Flaherty DK, Stromberg PC, Carruthers B, Turner J: CBA/J mice generate protective immunity to soluble ag85 but fail to respond efficiently to ag85 during natural Mycobacterium tuberculosis infection. Eur J Immunol. 2012, 42 (4): 870-879. 10.1002/eji.201142054. Beamer GL, Flaherty DK, Vesosky B, Turner J: Peripheral blood gamma interferon release assays predict lung responses and Mycobacterium tuberculosis disease outcome in mice. Clin Vaccine Immunol. 2008, 15 (3): 474-483. 10.1128/CVI.00408-07. Logan RW, Robledo RF, Recla JM, Philip VM, Bubier JA, Jay JJ, Harwood C, Wilcox T, Gatti DM, Bult CJ, Churchill GA, Chesler EJ: High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav. 2013, 12 (4): 424-437. 10.1111/gbb.12029. Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, Chesler EJ: Precise genetic mapping and integrative bioinformatics in diversity outbred mice reveals hydin as a novel pain gene. Mamm Genome. 2014, 25 (5-6): 211-222. 10.1007/s00335-014-9508-0. Flurkey K, Astle CM, Harrison DE: Life extension by diet restriction and n-acetyl-l-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010, 65 (12): 1275-1284. 10.1093/gerona/glq155. Ye L, Widlund AL, Sims CA, Lamming DW, Guan Y, Davis JG, Sabatini DM, Harrison DE, Vang O, Baur JA: Rapamycin doses sufficient to extend lifespan do not compromise muscle mitochondrial content or endurance. Aging (Albany NY). 2013, 5 (7): 539-550. Beamer GL, Turner J: Murine models of susceptibility to tuberculosis. Arch Immunol Ther Exp (Warsz). 2005, 53 (6): 469-483. Major S, Turner J, Beamer G: Tuberculosis in CBA/J mice. Vet Pathol. 2013, 50 (6): 1016-1021. 10.1177/0300985813482952. Flynn JL, Chan J: Immunology of tuberculosis. Annu Rev Immunol. 2001, 19: 93-129. 10.1146/annurev.immunol.19.1.93. Cooper AM: Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009, 27: 393-422. 10.1146/annurev.immunol.021908.132703. National Institute on Aging Interventions Testing Program (ITP). Available from: http://www.nia.nih.gov/research/dab/interventions-testing-program-itp. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Eissa NT: Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009, 15 (3): 267-276. 10.1038/nm.1928. Gupta A, Pant G, Mitra K, Madan J, Chourasia MK, Misra A: Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014, 11 (4): 1201-1207. 10.1021/mp4006563. Deretic V: Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it. Future Microbiol. 2008, 3 (5): 517-524. 10.2217/17460913.3.5.517.